早教吧作业答案频道 -->数学-->
等差数列an的首项是a1=1,公差d>0,且第二项,第五项,第十四项已知等差数列{an}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{bn}的第2项,第3项,第4项.1,求an通项公式2,设bn=1/n(an+3),Sn=b1+b2.+bn
题目详情
等差数列an的首项是a1=1,公差d>0,且第二项,第五项,第十四项
已知等差数列{an}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{bn}的第2项,第3项,第4项.
1,求an通项公式
2,设bn=1/n(an+3),Sn=b1+b2.+bn,问是否存在最大的整数t,使得对任意的n均有sn>t/36总成立?请求出t.
已知等差数列{an}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{bn}的第2项,第3项,第4项.
1,求an通项公式
2,设bn=1/n(an+3),Sn=b1+b2.+bn,问是否存在最大的整数t,使得对任意的n均有sn>t/36总成立?请求出t.
▼优质解答
答案和解析
①等差数列{an}的首项a1=1,d>0,且第2项,第5项,第14项分别是
a2=1+d,a5=1+4d,a14=1+13d
a2,a5,a13分别是等比数列{bn}的第2项,第3项,第4项
(a5)^2=a2*a13
(1+4d)^2=(1+d)*(1+13d)
d=0(舍去)d=2
an=1+(n-1)*2=2n-1
②bn=1/2n(n+1)
sn=1/2[1/(1×2)+1/(2×3)+.1/n(n+1)]
=1/2[1-1/2+1/2-1/3+1/3-1/4+.1/n-1/(n+1)]
=1/2[1-1/(n+1)]=n/(2n+2)
假设存在整数t 使sn>t/36
而s(n+1)-sn=1/2(n+2)(n+1)>0
所以sn递增的 最小值s1=1/4
所以sn>1/4恒成立,得t<9时sn>t/36恒成立
又因为t为整数,所以存在t=8使得对任意的n均有sn>t/36总成立
①等差数列{an}的首项a1=1,d>0,且第2项,第5项,第14项分别是
a2=1+d,a5=1+4d,a14=1+13d
a2,a5,a13分别是等比数列{bn}的第2项,第3项,第4项
(a5)^2=a2*a13
(1+4d)^2=(1+d)*(1+13d)
d=0(舍去)d=2
an=1+(n-1)*2=2n-1
②bn=1/2n(n+1)
sn=1/2[1/(1×2)+1/(2×3)+.1/n(n+1)]
=1/2[1-1/2+1/2-1/3+1/3-1/4+.1/n-1/(n+1)]
=1/2[1-1/(n+1)]=n/(2n+2)
假设存在整数t 使sn>t/36
而s(n+1)-sn=1/2(n+2)(n+1)>0
所以sn递增的 最小值s1=1/4
所以sn>1/4恒成立,得t<9时sn>t/36恒成立
又因为t为整数,所以存在t=8使得对任意的n均有sn>t/36总成立
看了 等差数列an的首项是a1=1...的网友还看了以下:
等差数列首项为4,它的第1、7、10项是某个等比数列前3项.求等差数列通项公式和等比数列前n项和 2020-05-13 …
在等差数列{an}中,已知a1=1,a4=7,(1)求此数列的公差d和通项公式;(2)求此数列在等 2020-05-14 …
已知等差数列An中.公差D不等于零.A2=1,A2A3A6衣次是一等比数列的前三项.求等差数列通相 2020-05-17 …
阅读下列材料:∵∴解答问题:(1)在式中,第六项为,第项为,上述求和的想法是通过逆用法则,将式中各 2020-06-16 …
等差数列通项公式在等差数列{An}中,A5=-3.,A9=-15,判断-48是否为数列中的项,如果 2020-07-09 …
设{an}是公差不为零的等差数列,Sn为其前n项和,满足a22+a32=a42+a52,S7=7(1 2020-10-30 …
已知数列{an}的通项公式an=1+2+3+...+n/n,bn=1/an*an+1,则bn的前n项 2020-10-31 …
(1)若等比数列的首项为4,公比为2,则其第3项是?(2)已知等差数列1,4,7,10,.,则489 2020-11-20 …
已知等差数列满足⑴求数列的通项公式;⑵把数列的第1项、第4项、第7项、……、第项、……分别作为数列的 2020-12-17 …
等差数列的中项公式是什么请教,在公差D,项数N,第一项、最后一项等某几项已知的情况下,怎么求其他.我 2021-02-09 …