早教吧作业答案频道 -->数学-->
等差数列an的首项是a1=1,公差d>0,且第二项,第五项,第十四项已知等差数列{an}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{bn}的第2项,第3项,第4项.1,求an通项公式2,设bn=1/n(an+3),Sn=b1+b2.+bn
题目详情
等差数列an的首项是a1=1,公差d>0,且第二项,第五项,第十四项
已知等差数列{an}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{bn}的第2项,第3项,第4项.
1,求an通项公式
2,设bn=1/n(an+3),Sn=b1+b2.+bn,问是否存在最大的整数t,使得对任意的n均有sn>t/36总成立?请求出t.
已知等差数列{an}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{bn}的第2项,第3项,第4项.
1,求an通项公式
2,设bn=1/n(an+3),Sn=b1+b2.+bn,问是否存在最大的整数t,使得对任意的n均有sn>t/36总成立?请求出t.
▼优质解答
答案和解析
①等差数列{an}的首项a1=1,d>0,且第2项,第5项,第14项分别是
a2=1+d,a5=1+4d,a14=1+13d
a2,a5,a13分别是等比数列{bn}的第2项,第3项,第4项
(a5)^2=a2*a13
(1+4d)^2=(1+d)*(1+13d)
d=0(舍去)d=2
an=1+(n-1)*2=2n-1
②bn=1/2n(n+1)
sn=1/2[1/(1×2)+1/(2×3)+.1/n(n+1)]
=1/2[1-1/2+1/2-1/3+1/3-1/4+.1/n-1/(n+1)]
=1/2[1-1/(n+1)]=n/(2n+2)
假设存在整数t 使sn>t/36
而s(n+1)-sn=1/2(n+2)(n+1)>0
所以sn递增的 最小值s1=1/4
所以sn>1/4恒成立,得t<9时sn>t/36恒成立
又因为t为整数,所以存在t=8使得对任意的n均有sn>t/36总成立
①等差数列{an}的首项a1=1,d>0,且第2项,第5项,第14项分别是
a2=1+d,a5=1+4d,a14=1+13d
a2,a5,a13分别是等比数列{bn}的第2项,第3项,第4项
(a5)^2=a2*a13
(1+4d)^2=(1+d)*(1+13d)
d=0(舍去)d=2
an=1+(n-1)*2=2n-1
②bn=1/2n(n+1)
sn=1/2[1/(1×2)+1/(2×3)+.1/n(n+1)]
=1/2[1-1/2+1/2-1/3+1/3-1/4+.1/n-1/(n+1)]
=1/2[1-1/(n+1)]=n/(2n+2)
假设存在整数t 使sn>t/36
而s(n+1)-sn=1/2(n+2)(n+1)>0
所以sn递增的 最小值s1=1/4
所以sn>1/4恒成立,得t<9时sn>t/36恒成立
又因为t为整数,所以存在t=8使得对任意的n均有sn>t/36总成立
看了 等差数列an的首项是a1=1...的网友还看了以下:
数列{an}中,a1=1,Sn表示前n项的和,且Sn,Sn+1,2S1成等差数列已知数列{an}中 2020-06-03 …
已知等差数列1,4,9,16,25求等差a(n)的公式?即通项!这个数列的两项之差是个等差数值列! 2020-06-04 …
己知等差数列的前三项依次为a,4,3a,前n项和为Sn,且SK=110,设数列{bn}的通项bn= 2020-07-08 …
设数列{an}的前n项和为Sn,已知A1=1,sn=na1-n(n-1),求证数列an为等差数列设 2020-07-18 …
已知Sn是等差数列{an}的前n项和,bn=Sn/n,①证:数列{bn}是等差数列②若S7=已知S 2020-07-23 …
设Sn是公差为d(d≠0)的无穷等差数列{an}的前n项和,则下列命题错误的是()A.若d<0,则 2020-08-02 …
设Sn是公差为d的无穷等差数列{an}的前n项和,则下列说法正确的是.①若d<0,则数列{Sn}有 2020-08-02 …
下列五个命题:(1)Sn是等比数列{an}的前n项和且Sn≠0,Sn,S2n-Sn,S3n-S2n成 2020-11-20 …
已知正数数列{an}的前n项和为Sn,满足an2=Sn+Sn-1(n≥2),a1=1.(I)求证:数 2020-12-23 …
等差数列前N项和是SN=30,前2N项和是S2N=100求S3N的值答案说用SN,S2N-SN,S3 2020-12-31 …