早教吧作业答案频道 -->数学-->
一道高一二次函数题设二次函数f(x)=ax²+bx+c(a,b,c∈R)满足下列条件:1>当x∈R时,f(x)的最小值为0,且f(x-1)=f(-x-1)成立;2>当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立.(1)求f(1)的值;(2
题目详情
一道高一二次函数题
设二次函数f(x)=ax²+bx+c(a,b,c∈R)满足下列条件:
1>当x∈R时,f(x)的最小值为0,且f(x-1)=f(-x-1)成立;
2>当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求f(x)解析式;
(3)求最大的实数m(m>1),使得存在实数t,只要当x∈[1,m]时,就有f(x+t)≤x成立.
设二次函数f(x)=ax²+bx+c(a,b,c∈R)满足下列条件:
1>当x∈R时,f(x)的最小值为0,且f(x-1)=f(-x-1)成立;
2>当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求f(x)解析式;
(3)求最大的实数m(m>1),使得存在实数t,只要当x∈[1,m]时,就有f(x+t)≤x成立.
▼优质解答
答案和解析
(1)根据②,1≤f(1)≤1,即f(1)=1
(2)f(x-1)=f(-x-1),说明对称轴是x=(x-1-x-1)/2=-1,又因为最小值为0,所以二次函数为y=1/4*(x+1)^2
(3)这个,你可以分开来看,就是等效于f(x+t)在∈[1,m]时,图象在y=x的下方.那么就可以得到,f(1+t)≤t,f(m+t)≤m
明白吗这里?
然后解即可,由f(1+t)≤t知-4≤t≤0,再解出第二个不等式,将这个范围带进去,得到m≤9,当t=-4时m取到9.最大的就是9
好麻烦啊..如果不明白我编辑过程成图片
(2)f(x-1)=f(-x-1),说明对称轴是x=(x-1-x-1)/2=-1,又因为最小值为0,所以二次函数为y=1/4*(x+1)^2
(3)这个,你可以分开来看,就是等效于f(x+t)在∈[1,m]时,图象在y=x的下方.那么就可以得到,f(1+t)≤t,f(m+t)≤m
明白吗这里?
然后解即可,由f(1+t)≤t知-4≤t≤0,再解出第二个不等式,将这个范围带进去,得到m≤9,当t=-4时m取到9.最大的就是9
好麻烦啊..如果不明白我编辑过程成图片
看了 一道高一二次函数题设二次函数...的网友还看了以下:
递推公式的数学题1.已知A1等于1,A2等于1,且An+2等于An+1+An,那么A3等于?A4,A 2020-03-31 …
已知函数f(x)对任意实数x1,x2,都有f(x1x2)=f(x1)+f(x2)成立原题是:已知函 2020-05-17 …
.已知f(n)=sin(nπ\2+π\4)(n属于N),则f(1)+f(2)+f(3)+...+f 2020-05-20 …
若f(x+y)=f(x)f(y)+f(x)+f(y).则f(1)+f(2)+…+f(2012)=尽 2020-05-20 …
A.F*F+T*FB.F*F+TC.F*(E)+TD.(E)*F+T 2020-05-26 …
A.F* F+T*FB.F*F+TC.F*(E)+TD.(E)*F+T 2020-05-26 …
变限积分[a,b]上的积分∫[f(x+h)-f(x)]dx令x+h=t,那原式=∫[a+h,b+h 2020-07-11 …
对于正数x,规定f(x)=x/1+x,例如f(3)=3/(1+3)=3/4,f(1/3)=(1/3 2020-07-17 …
“函数f(x)的图像与直线y=x相切”已知二次函数f(x)=ax2+bx,f(x+1)为偶函数,函 2020-07-20 …
若f(x)是单调(或连续)函数且满足f(x+y)=f(x)+f(y)(x,y∈R)、则f(x)=x 2020-07-30 …