早教吧作业答案频道 -->数学-->
已知数列{an}:an=8/((n+1)(n+3)),求(n+1)(an-an+1)和的值.
题目详情
已知数列{an}:an=8/((n+1)(n+3)),求(n+1)(an-an+1)和的值.
▼优质解答
答案和解析
an=8/((n+1)(n+3))=4(1/(n+1)-1/(n+3))
令bn=(n+1)(an-an+1)
bn=(n+1)(an-an+1)
=4(n+1)[(1/(n+1)-1/(n+3))-(1/(n+2)-1/(n+4))]
=4(n+1)[1/(n+1)-1/(n+2)-1/(n+3)+1/(n+4)]
=4[1-(1-1/(n+2))-(1-2/(n+3))+(1-3/(n+4))]
=4[1/(n+2)+2/(n+3)-3/(n+4)]
那么bn前n项和:
Tn=4[(1/3+2/4-3/5)+(1/4+2/5-3/6)+(1/5+2/6-3/7)+...+1/(n+2)+2/(n+3)-3/(n+4)]
=4[1/3+2/4+1/4-1/(n+3)-3/(n+4)]
=13/3-4/(n+3)-12/(n+4)
令bn=(n+1)(an-an+1)
bn=(n+1)(an-an+1)
=4(n+1)[(1/(n+1)-1/(n+3))-(1/(n+2)-1/(n+4))]
=4(n+1)[1/(n+1)-1/(n+2)-1/(n+3)+1/(n+4)]
=4[1-(1-1/(n+2))-(1-2/(n+3))+(1-3/(n+4))]
=4[1/(n+2)+2/(n+3)-3/(n+4)]
那么bn前n项和:
Tn=4[(1/3+2/4-3/5)+(1/4+2/5-3/6)+(1/5+2/6-3/7)+...+1/(n+2)+2/(n+3)-3/(n+4)]
=4[1/3+2/4+1/4-1/(n+3)-3/(n+4)]
=13/3-4/(n+3)-12/(n+4)
看了 已知数列{an}:an=8/...的网友还看了以下:
已知各项均不为零的数列{an}的前n项和为Sn,且Sn=ana(n+1)/2,其中a1=1.若不等 2020-05-13 …
已知等差数列an的前n项和为18,若S3=1,a(n)+a(n-1)+a(n-2)=3,则n等于a 2020-05-17 …
关于等差数列的简易问题,a(n)=a(1)+(n-1)*d(1)d是差前n项和公式S(n)=n*a 2020-05-19 …
数列怎么这么难!1.已知a(1)=3且a(n)=S(n-1)+2^n,求an及Sn.2.已知S(n 2020-06-04 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
用a^n-b^n=(a-b)(a^(n-1)+a^(n-2)*b+...+ab^(n-2)+b^( 2020-07-14 …
无穷数列an中,a1=1,an=√(an-1)^2+4,(n>=2,n属于N*)已知数列{an}中 2020-08-02 …
基本不等式设数列a(n),b(n),且a(1)>b(1)>0,a(n)=(a(n-1)+b(n-1 2020-08-03 …
已知数列{an}满足a1=1,(a(n-1)+1)/an=(a(n-1)+1)/(1-an),(n∈ 2020-11-19 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …