早教吧作业答案频道 -->数学-->
设数列an的前n项和为sn,对任意的正整数n,都有an=5sn+1成立,记bn=(4+an)/(1-an)(n是正整数)(3)记Cn=b(2n)-b(2n-1),(n∈N+),设数列{cn}的前n项和为Tn,求证:对任意整数n,都有Tn
题目详情
设数列an的前n项和为sn,对任意的正整数n,都有an=5sn+1成立,记bn=(4+an)/(1-an)(n是正整数)
(3)记Cn=b(2n)-b(2n-1),(n∈N+),设数列{cn}的前n项和为Tn,求证:对任意整数n,都有Tn
(3)记Cn=b(2n)-b(2n-1),(n∈N+),设数列{cn}的前n项和为Tn,求证:对任意整数n,都有Tn
▼优质解答
答案和解析
因为an=5Sn+1
所以a(n-1)=5S(n-1)+1
所以an-a(n-1)=5Sn+1-[5S(n-1)+1]
所以an-a(n-1)=5[Sn-S(n-1)]=5an
所以an/a(n-1)=-1/4
即数列{an}是以公比为-1/4,首项为a1的等比数列
又因为a1=5S1+1=5a1+1
所以a1=-1/4
所以an=a1(-1/4)^(n-1)=(-1/4)^n
所以bn=(4+(-1/4)^n)/[1-(-1/4)^n]
=[4-4(-1/4)^n+5(-1/4)^n]/[1-(-1/4)^n]=4+[5(-1/4)^n]/[1-(-1/4)^n]
后面那一项上下同乘以(-4)^n,即得bn=4+5/[(-4)^n-1]
cn=b(2n)-b(2n-1)=4+5/[(-4)^2n-1]-{4+5/[(-4)^(2n-1)-1]}
=5/(16^n-1)-5/[-4^(2n-1)-1]=5/(16^n-1)+5/[4^(2n-1)+1](后面这串上下同乘以4)
=5/(16^n-1)+20/[4^(2n)+4]=5/(16^n-1)+20/[16^n+4](通分化简可得下式)
=25*16^n/[(16^n-1)*(16^n+4)]
=25*16^n/[16^2n+3*16^n-4]
所以a(n-1)=5S(n-1)+1
所以an-a(n-1)=5Sn+1-[5S(n-1)+1]
所以an-a(n-1)=5[Sn-S(n-1)]=5an
所以an/a(n-1)=-1/4
即数列{an}是以公比为-1/4,首项为a1的等比数列
又因为a1=5S1+1=5a1+1
所以a1=-1/4
所以an=a1(-1/4)^(n-1)=(-1/4)^n
所以bn=(4+(-1/4)^n)/[1-(-1/4)^n]
=[4-4(-1/4)^n+5(-1/4)^n]/[1-(-1/4)^n]=4+[5(-1/4)^n]/[1-(-1/4)^n]
后面那一项上下同乘以(-4)^n,即得bn=4+5/[(-4)^n-1]
cn=b(2n)-b(2n-1)=4+5/[(-4)^2n-1]-{4+5/[(-4)^(2n-1)-1]}
=5/(16^n-1)-5/[-4^(2n-1)-1]=5/(16^n-1)+5/[4^(2n-1)+1](后面这串上下同乘以4)
=5/(16^n-1)+20/[4^(2n)+4]=5/(16^n-1)+20/[16^n+4](通分化简可得下式)
=25*16^n/[(16^n-1)*(16^n+4)]
=25*16^n/[16^2n+3*16^n-4]
看了 设数列an的前n项和为sn,...的网友还看了以下:
已知数列{an}的前n项和为Sn,点(n,Sn/n)在直线y=1/2x+11/2上,数列{bn}满足 2020-03-30 …
已知等比数列{an}中,a1=1/3,公比q=1/3.求Sn为{an}的前n项和,证明:Sn=1- 2020-04-06 …
1.为了求1+2+2²+2³+…+2^2008的值,可令S=1+2+2²+2³+…+2^2008, 2020-06-02 …
一已知数列an满足递推公式an=2an-1+1(n>=2,n-1为小写),其中a4=151.求a1 2020-06-14 …
已知y=4x²-4x与x轴交与AB两点,定点1为c,求△ABC得面积数学老师出的题,我解得是8,老 2020-06-18 …
设Sn为等差数列{an}的前n项和,已知S3=a7,a8-2a3=3.(1)求an;(2)设b设S 2020-07-09 …
设数列{an}的前n项和为Sn,已知A1=1,sn=na1-n(n-1),求证数列an为等差数列设 2020-07-18 …
1.数列{an}的前n项和为Sn,且a1=1,an+1=1/3*Sn,n=1,2,3,...,求: 2020-07-25 …
已知数列{an}的前N项和为Sna1=1/4Sn=Sn-1+an-1+1/2数列{bn}满足3bn 2020-07-30 …
设正项等比数列共n项,记为{a},首项值为1/2,前n项和记为s,且(前30项的和与2^10的积) 2020-07-30 …