早教吧作业答案频道 -->数学-->
如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点.(1)求此抛物线的解析式;(2)若点M是线段BC上的点(不与B,C重合),过M作NM∥y轴交抛物线于N,设点M的横坐标为m,请用
题目详情
如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点.

(1)求此抛物线的解析式;
(2)若点M是线段BC上的点(不与B,C重合),过M作NM∥y轴交抛物线于N,设点M的横坐标为m,请用含m的代数式表示MN的长;
(3)在(2)的条件下,连接NB,NC,是否存在点M,使△BNC的面积最大?若存在,求m的值;若不存在,请说明理由.

(1)求此抛物线的解析式;
(2)若点M是线段BC上的点(不与B,C重合),过M作NM∥y轴交抛物线于N,设点M的横坐标为m,请用含m的代数式表示MN的长;
(3)在(2)的条件下,连接NB,NC,是否存在点M,使△BNC的面积最大?若存在,求m的值;若不存在,请说明理由.
▼优质解答
答案和解析
(1)设抛物线的解析式为:y=a(x+1)(x-3),则:
a(0+1)(0-3)=3,a=-1;
∴抛物线的解析式:y=-(x+1)(x-3)=-x2+2x+3.
(2)设直线BC的解析式为:y=kx+b,则有:
,
解得
;
故直线BC的解析式:y=-x+3.
已知点M的横坐标为m,MN∥y,则M(m,-m+3)、N(m,-m2+2m+3);
∴故MN=-m2+2m+3-(-m+3)=-m2+3m(0<m<3).
(3)如图;
∵S△BNC=S△MNC+S△MNB=
MN(OD+DB)=
MN•OB,
∴S△BNC=
(-m2+3m)•3=-
(m-
)2+
(0<m<3);
∴当m=
时,△BNC的面积最大,最大值为
.
a(0+1)(0-3)=3,a=-1;
∴抛物线的解析式:y=-(x+1)(x-3)=-x2+2x+3.
(2)设直线BC的解析式为:y=kx+b,则有:
|
解得
|
故直线BC的解析式:y=-x+3.

∴故MN=-m2+2m+3-(-m+3)=-m2+3m(0<m<3).
(3)如图;
∵S△BNC=S△MNC+S△MNB=
1 |
2 |
1 |
2 |
∴S△BNC=
1 |
2 |
3 |
2 |
3 |
2 |
27 |
8 |
∴当m=
3 |
2 |
27 |
8 |
看了 如图,已知抛物线经过点A(-...的网友还看了以下:
已知线段AB的长度为a,C是线段AB的中点,E、F分别是AC、CB的中点中点,求EF的长度,如果将 2020-06-15 …
线段的比例中项c是线段a、b的比例中项,a=4,b=16,则c=题目中没有说c是线段,那么c是不是 2020-07-30 …
(1)在线段AB上取一点C,使AC=1/3AB再在AB的延长线上取一点D使BD=1/4AD则线段B 2020-07-30 …
如图,已知抛物线y=x2-2tx+t2-2的顶点A在第四象限,过点A作AB⊥y轴于点B,C是线段A 2020-08-01 …
如图,已知直线y=−43x+8与x轴交于点A,与y轴交于点B,C是线段AB的中点.抛物线y=ax2 2020-08-01 …
设a,b,c为非零向量,其中任意两个向量不共线.设a、b、c为非零向量,其中任意两向量不共线,已知 2020-08-01 …
线性代数,如向量a,b,c线性无关,a,b,d线性相关,则()A)a必可由b,c,d线性表示B)b不 2020-11-03 …
若非零平面向量满足(AB)C=A(BC)则(ABC为向量,空格键表示点乘)则?A,C共线?若非零平面 2020-12-07 …
线段AB=a,C是线段AB上的人任一点,M是AC中点,N是BC中点,请问在C的运动过程中,MN的长度 2020-12-31 …
(1)已知线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,求AC长;(2)已知线段a、b 2021-02-02 …