早教吧作业答案频道 -->数学-->
设函数f(x)=x^2-ax+a+3,g(x)=ax-2a,若存在x0∈R,使f(x0)<0与g(x0)同时成立,则实数a的取值范围是
题目详情
设函数f(x)=x^2-ax+a+3,g(x)=ax-2a,若存在x0∈R,使f(x0)<0与g(x0)同时成立,则实数a的取值范围是
▼优质解答
答案和解析
由f(x)=x2-ax+a+3知f(0)=a+3,f(1)=4,
又存在x0∈R,使得f(x0)<0,
知△=a2-4(a+3)>0即a<-2或a>6,
另g(x)=ax-2a中恒过(2,0),
故由函数的图象知:
①若a=0时,f(x)=x2-ax+a+3=x2+3恒大于0,显然不成立.
②若a>0时,g(x0)<0⇔x0<2
a>0
f(2)<0
⇒a>7
③若a<0时,g(x0)<0⇔x0>2
此时函数f(x)=x2-ax+a+3图象的对称轴x=
a
2
<−1,
故函数在区间(
a
2
,+∞)上为增函数
又∵f(1)=4,
∴f(x0)<0不成立.
故答案为:(7,+∞).
又存在x0∈R,使得f(x0)<0,
知△=a2-4(a+3)>0即a<-2或a>6,
另g(x)=ax-2a中恒过(2,0),
故由函数的图象知:
①若a=0时,f(x)=x2-ax+a+3=x2+3恒大于0,显然不成立.
②若a>0时,g(x0)<0⇔x0<2
a>0
f(2)<0
⇒a>7
③若a<0时,g(x0)<0⇔x0>2
此时函数f(x)=x2-ax+a+3图象的对称轴x=
a
2
<−1,
故函数在区间(
a
2
,+∞)上为增函数
又∵f(1)=4,
∴f(x0)<0不成立.
故答案为:(7,+∞).
看了 设函数f(x)=x^2-ax...的网友还看了以下:
已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]①若f(x)无零点,则g(x)> 2020-05-23 …
1.如果f(x)=x²+bx+c,对任意实数t都有f(t+2)=f(2-t),比较f(1),f(2 2020-06-03 …
对于等式sin3x=sin2x+sinx,下列说法中正确的是()A.对于任意x∈R,等式都成立B. 2020-07-02 …
设函数f(x)=2x−12x+1(x∈R),g(x)=x+4x−299(x∈(0,2])(Ⅰ)求证 2020-07-19 …
已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个命题①若a>0,则不等 2020-07-21 …
已知函数f(x)=sinx,x∈R(1)g(x)=2sinx*(sinx+cosx)-1的图像可由 2020-07-23 …
设函数F(X)=√2/2cos(2x+∏/4)+sin^2x,求函数f(x)的最小正周期2.设函数 2020-08-03 …
设函数F(X)=√2/2cos(2x+∏/4)+sin^2x,求函数f(x)的最小正周期2.设函数 2020-08-03 …
数学分析习题设函数f的定义域为R,不恒为0,且对一切x,y∈R满足①f(x+y)=f(x)+f(y) 2020-11-20 …
已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]①若f(x)无零点,则g(x)>0 2020-12-23 …