早教吧作业答案频道 -->数学-->
设函数f(x)=x^2-ax+a+3,g(x)=ax-2a,若存在x0∈R,使f(x0)<0与g(x0)同时成立,则实数a的取值范围是
题目详情
设函数f(x)=x^2-ax+a+3,g(x)=ax-2a,若存在x0∈R,使f(x0)<0与g(x0)同时成立,则实数a的取值范围是
▼优质解答
答案和解析
由f(x)=x2-ax+a+3知f(0)=a+3,f(1)=4,
又存在x0∈R,使得f(x0)<0,
知△=a2-4(a+3)>0即a<-2或a>6,
另g(x)=ax-2a中恒过(2,0),
故由函数的图象知:
①若a=0时,f(x)=x2-ax+a+3=x2+3恒大于0,显然不成立.
②若a>0时,g(x0)<0⇔x0<2
a>0
f(2)<0
⇒a>7
③若a<0时,g(x0)<0⇔x0>2
此时函数f(x)=x2-ax+a+3图象的对称轴x=
a
2
<−1,
故函数在区间(
a
2
,+∞)上为增函数
又∵f(1)=4,
∴f(x0)<0不成立.
故答案为:(7,+∞).
又存在x0∈R,使得f(x0)<0,
知△=a2-4(a+3)>0即a<-2或a>6,
另g(x)=ax-2a中恒过(2,0),
故由函数的图象知:
①若a=0时,f(x)=x2-ax+a+3=x2+3恒大于0,显然不成立.
②若a>0时,g(x0)<0⇔x0<2
a>0
f(2)<0
⇒a>7
③若a<0时,g(x0)<0⇔x0>2
此时函数f(x)=x2-ax+a+3图象的对称轴x=
a
2
<−1,
故函数在区间(
a
2
,+∞)上为增函数
又∵f(1)=4,
∴f(x0)<0不成立.
故答案为:(7,+∞).
看了 设函数f(x)=x^2-ax...的网友还看了以下:
已知函数f(x)=x^4-4x^3+ax^2-1在区间[0,1]上单调增,在区间[1,2]上单调减 2020-05-15 …
已知f(x)=ax^2=bx+c,g(x)=-bx,其中a>b>c且f(1)=0,设方程f(x)= 2020-06-02 …
快来拿分设f(x)=ax^2+bx+c(a>b>c,a不为0),且f(1)=0,g(x)=ax+b 2020-06-05 …
已知函数f(x)=x2+2ax+1,g(x)=2x+2a(a∈R)(1)若对任意x∈R,不等式f( 2020-06-08 …
设函数f(x)=|x-3|-|x+1|,x∈R.(1)解不等式f(x)<-1;(2)设函数g(x) 2020-06-18 …
已知f(x)=x2+mx+1(m∈R),g(x)=ex.(1)当x∈[0,2]时,F(x)=f(x 2020-07-26 …
已知函数f(x)=2|x-2|+ax(x∈R)有最小值.(1)求实常数a的取值范围;(2)设g(x 2020-07-27 …
(本小题满分12分)已知函数f(x)=x∈[0,2].(1)求f(x)的值域;(2)设a≠0函数g( 2020-11-01 …
设函数g(x)=ax^2+bx+c(a>0),且g(1)=-a/2.(1)求证:函数g(x)有两个零 2020-12-26 …
设函数f(x)=e^x-1-x-ax^2若当x>=0时,f(x)>=0,求a的取值范围我做的过程是令 2020-12-27 …