早教吧作业答案频道 -->数学-->
已知函数f(x)=ax2+bx+c,f(0)=0,对任意实数x恒有f(1-x)=f(1+x)成立,方程f(x)有两个相等的实数根.1)求f(x)(2)是否存在实数m,n,使函数f(x)在[m,n]上的值域为[3m,3n]?为什么?
题目详情
已知函数f(x)=ax2+bx+c,f(0)=0,对任意实数x恒有f(1-x)=f(1+x)成立,方程f(x)有两个相等的实数根.
1)求f(x)
(2)是否存在实数m,n,使函数f(x)在[m,n]上的值域为[3m,3n]?为什么?
1)求f(x)
(2)是否存在实数m,n,使函数f(x)在[m,n]上的值域为[3m,3n]?为什么?
▼优质解答
答案和解析
题目不全,方程不完整:方程f(x)=?
假设方程为:f(x)=x有两个相等的实数根
(1)f(0)=0
a*0^2+b*0+c=0
c=0
f(x)=ax^2+bx
=a(x+b/2a)^2-b^2/4a
f(1-x)=f(1+x):对称轴x=1
-b/2a=1
b=-2a
f(x)=x
ax^2+bx=x
ax^2+(b-1)x=0
有两个相等的实数根
Δ=0
(b-1)^2-4a*0=0
(b-1)^2=0
b=1
f(2)=f(0)=0
a*2^2+2b=0
4a+2*1=0
a=-1/2
解析式:f(x)=-1/2x^2+x
(2)f(x)=3x
-1/2x^2+x=3x
x^2+4x=0
x(x+4)=0
x1=-4
x2=0
当m=-4时,f(m)=-1/2(-4)^2-4
=-12
=3m
当n=0时,f(n)=-1/2*0^2+0
=0
=3n
∴存在这样的实数m、n,使函数f(x)在[m,n]上的值域为[3m,3n].
假设方程为:f(x)=x有两个相等的实数根
(1)f(0)=0
a*0^2+b*0+c=0
c=0
f(x)=ax^2+bx
=a(x+b/2a)^2-b^2/4a
f(1-x)=f(1+x):对称轴x=1
-b/2a=1
b=-2a
f(x)=x
ax^2+bx=x
ax^2+(b-1)x=0
有两个相等的实数根
Δ=0
(b-1)^2-4a*0=0
(b-1)^2=0
b=1
f(2)=f(0)=0
a*2^2+2b=0
4a+2*1=0
a=-1/2
解析式:f(x)=-1/2x^2+x
(2)f(x)=3x
-1/2x^2+x=3x
x^2+4x=0
x(x+4)=0
x1=-4
x2=0
当m=-4时,f(m)=-1/2(-4)^2-4
=-12
=3m
当n=0时,f(n)=-1/2*0^2+0
=0
=3n
∴存在这样的实数m、n,使函数f(x)在[m,n]上的值域为[3m,3n].
看了 已知函数f(x)=ax2+b...的网友还看了以下:
MATLAB怎么画y=(sinx)^n,x在0到2π范围上.用最简单的代码 2020-05-16 …
f(x)在0,+无穷)上连续,在(0,+无穷)上可微,且f(x)的导数单调递增,f(0)=0,证明 2020-06-05 …
氮原子有取代基的有机化合物命名问题.氮原子有取代基的话记为N-x(x为取代基),有的N-x在前边如 2020-06-23 …
f(x)是域F上的首一不可约多项式,域的特征CharF=0,设E是包含F的代数封闭域,由于f(x) 2020-07-27 …
已知集合M={(x,y)|x+y=1},映射f:M→N,在f作用下点(x,y)的象是(2x,2y) 2020-07-30 …
已知集合M={(x,y)|x+y=1},映射f:M→N,在f作用下点(x,y)的象是(2x,2y) 2020-07-30 …
怎么判断一个函数列是不是对一个函数一致收敛啊,看不懂,那个所谓最小上界为0,怎么求最小上界?不是有 2020-07-31 …
几道高数题,1.求lim(n→∞)sin^2(∏√(n^2+n))2.设f(x)在[a,+∞)上连 2020-07-31 …
证明原函数和反函数单调性相同已知y=f(x)在[a,b]上是增函数,求证y=f-1(x)在[f(a 2020-08-01 …
周期函数选择一道任意实数x,f(x)=|sinx|,g(x)﹦x-n(n≤x<n+1,n∈z),在 2020-08-02 …