早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若圆x^2+y^2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为2√2,问:直线l的斜率的取值区间为?

题目详情
若圆x^2+y^2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为2√2,问:直线l的斜率的取值区间为?
▼优质解答
答案和解析

将圆的方程x2+y2-4x-4y-10=0化成标准方程为(x-2)2+(y-2)2=18, 

∴圆心为P(2,2),半径为3 

如图所示,设l1与l2为过原点的两条直线,且圆心P到l1及l2的距离均为 ,由于圆的半径为3 ,则与l1平等且与圆相切的直线同圆的切点就是一个到直线l1的距离为2 的点,另一侧则有两个满足条件的点,同理可以知道l2也为一条满足条件的临界直线,此时,倾斜角范围为[π/12,5π/12]

所以、、、斜率=tan倾斜角、、、、剩下自己算吧、、、