早教吧作业答案频道 -->数学-->
(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的
题目详情
(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;
(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.

(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.

▼优质解答
答案和解析
(1)如图3,
∵△DOC和△ABO都是等边三角形,
且点O是线段AD的中点,
∴OD=OC=OB=OA,∠1=∠2=60°,
∴∠4=∠5.
又∵∠4+∠5=∠2=60°,
∴∠4=30°.
同理∠6=30°.
∵∠AEB=∠4+∠6,
∴∠AEB=60°.
(2)如图4
∵△DOC和△ABO都是等边三角形,
∴OD=OC,OB=OA,∠1=∠2=60°.
又∵OD=OA,
∴OD=OB,OA=OC,
∴∠4=∠5,∠6=∠7.
∵∠DOB=∠1+∠3,
∠AOC=∠2+∠3,
∴∠DOB=∠AOC.
∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,
∴2∠5=2∠6,
∴∠5=∠6.
又∵∠AEB=∠8-∠5,∠8=∠2+∠6,
∴∠AEB=∠2+∠6-∠5=∠2+∠5-∠5=∠2,
∴∠AEB=60°.

∵△DOC和△ABO都是等边三角形,
且点O是线段AD的中点,
∴OD=OC=OB=OA,∠1=∠2=60°,
∴∠4=∠5.
又∵∠4+∠5=∠2=60°,
∴∠4=30°.
同理∠6=30°.
∵∠AEB=∠4+∠6,
∴∠AEB=60°.
(2)如图4

∵△DOC和△ABO都是等边三角形,
∴OD=OC,OB=OA,∠1=∠2=60°.
又∵OD=OA,
∴OD=OB,OA=OC,
∴∠4=∠5,∠6=∠7.
∵∠DOB=∠1+∠3,
∠AOC=∠2+∠3,
∴∠DOB=∠AOC.
∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,
∴2∠5=2∠6,
∴∠5=∠6.
又∵∠AEB=∠8-∠5,∠8=∠2+∠6,
∴∠AEB=∠2+∠6-∠5=∠2+∠5-∠5=∠2,
∴∠AEB=60°.
看了 (1)如图1,点O是线段AD...的网友还看了以下:
把一个边长是1分米的正方形铁片卷成一个最大的圆柱形侧面,由这个侧面组成的圆柱的体积是()A.π4立 2020-06-08 …
如图,C、D是线段AB上两点,且AC=BD=16AB=1,点P是线段CD上一个动点,在AB同侧分别 2020-06-15 …
已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边 2020-06-20 …
已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边 2020-06-20 …
小科同学做了一个趣味实验,将两张纸垂挂在筷子上,并向两张纸的中间吹气,将会出现的现象是()A.两张 2020-06-30 …
把一个边长是1分米的正方形铁片卷成一个最大的圆柱形侧面,由这个侧面组成的圆柱的体积是()A.π4立 2020-07-26 …
如图,以△ABC的各边为边,在BC的同侧分别作三个正五边形.它们分别是正五边形ABFKL、BCJI 2020-08-01 …
2007年8月8日是北京2008奥运会一周年倒计时的日子.小刚制作了一个侧面边长为1的等边三角形样式 2020-12-05 …
已知线段AB=10,C.D是AB上两点,且AC=DB=2,P是线段CD上一动点,在AB同侧分别作等边 2020-12-27 …
已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三 2020-12-27 …