早教吧作业答案频道 -->数学-->
直线y-ax-1=0和双曲线3x²-y²=1相交于A、B两点.(1)当a为何值时,以AB为直径的圆过原点.(2)是否存在这样的实数a,使得两交点A、B关于y=x对称.若存在,求出a;若不存在,说明理由.
题目详情
直线y-ax-1=0和双曲线3x²-y²=1相交于A、B两点.(1)当a为何值时,以AB为直径的圆过原点.(2)是否存在这样的实数a,使得两交点A、B关于y=x对称.若存在,求出a;若不存在,说明理由.
▼优质解答
答案和解析
y=ax+1代入双曲线,得:
3x²-(ax+1)²=1
(3-a²)x²-2ax-2=0
则:
x1+x2=(2a)/(3-a²)、x1x2=2/(a²-3)
因以AB为直径的圆过原点,则:
OA垂直OB【这里是向量】,因OA=(x1,y1)、OB=(x2,y2),则:
x1x2+y1y2=0
x1x2+(ax1+1)(ax2+1)=0
(1+a²)(x1x2)+a(x1+x2)+1=0
代入,化简,得:
a=±1
3x²-(ax+1)²=1
(3-a²)x²-2ax-2=0
则:
x1+x2=(2a)/(3-a²)、x1x2=2/(a²-3)
因以AB为直径的圆过原点,则:
OA垂直OB【这里是向量】,因OA=(x1,y1)、OB=(x2,y2),则:
x1x2+y1y2=0
x1x2+(ax1+1)(ax2+1)=0
(1+a²)(x1x2)+a(x1+x2)+1=0
代入,化简,得:
a=±1
看了 直线y-ax-1=0和双曲线...的网友还看了以下:
关于的方程(x^2-1)^2-|x^2-1|+k=0,给出下列四个命题:(1)存在实数k,使得方程 2020-06-07 …
关于x的方程(x2-1)2-丨x2-1丨+k=0,给出下列四个命题:1.存在实数k,使得方程恰有2 2020-06-07 …
设函数f(x)=sin(x+a),a为常数,有以下说法1.存在a使函数为非奇非偶函数设函数f(x) 2020-06-07 …
(1/2)已知直线l:y=x+b及圆C:x^2+y^2=1,存在b,使自A(3,3)发出的光线被直 2020-06-09 …
快椭圆G:x^2/4+y^2/3=1,直线l过左焦点F1(-1,0),且与椭圆G交于点A,B两点, 2020-06-30 …
定义在[-1,1]上的奇函数f(x)满足f(1)=2,且当a,b∈[-1,1],a+b≠0时,有f 2020-07-20 …
已知平面上一点M(5,0),若直线上存在点P使|PM|=4,则称该直线为“切割型直线”,下列直线中 2020-07-26 …
设非空集合A={X|-3≤X≤a},B={y|y=3x+10,x属于A},C={z|z=5-x,x 2020-08-01 …
如下图,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点.(1)求点的坐标;(2)求直线 2020-08-03 …
1、在公差d不为零的等差数列{an}和等比数列{bn}中,一直a1=1且a1=b1,a2=b2,a8 2020-11-20 …