早教吧作业答案频道 -->数学-->
如图,直线y=3x+3交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0
题目详情
如图,直线y=3x+3交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0
▼优质解答
答案和解析
分析:(1)由直线y=3x+3交x轴于A点,交y轴于B点,即可求得点A与B的坐标,又由过A、B两点的抛物线交x轴于另一点C(3,0),利用两点式法即可求得抛物线的解析式;
(2)分别从AB=BQ,AQ=BQ,AB=AQ三方面去分析,注意抓住线段的求解方法,借助于方程求解即可求得答案.
(1)∵当x=0时,y=3,
当y=0时,x=﹣1,
∴A(﹣1,0),B(0,3),
∵C(3,0),
设抛物线的解析式为y=a(x+1)(x﹣3),
∴3=a×1×(﹣3),
∴a=﹣1,
∴此抛物线的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;
(2)存在.
①∵抛物线的对称轴为:x= =1,
∴如图对称轴与x轴的交点即为Q1,
∵OA=OQ1,BO⊥AQ1,
∴“当Q1B=AB时,设Q(1,q),
∴1+(q﹣3)2=10,
∴q=0,或q=6,
∴Q(1,0)或Q(1,6).
当Q2A=Q2B时,设Q2的坐标为(1,m),
∴22+m2=12+(3﹣m)2,
∴m=1,
∴Q2(1,1);
当Q3A=AB时,设Q3(1,n),
∴22+n2=12+32,
∴n=± ,
∴Q3(1,),Q4(1,﹣ ).
∴符合条件的Q点坐标为Q1(1,0),Q2(1,1),Q3(1,),Q4(1,﹣ ),Q5(1,6)..
(2)分别从AB=BQ,AQ=BQ,AB=AQ三方面去分析,注意抓住线段的求解方法,借助于方程求解即可求得答案.
(1)∵当x=0时,y=3,
当y=0时,x=﹣1,
∴A(﹣1,0),B(0,3),
∵C(3,0),
设抛物线的解析式为y=a(x+1)(x﹣3),
∴3=a×1×(﹣3),
∴a=﹣1,
∴此抛物线的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;
(2)存在.
①∵抛物线的对称轴为:x= =1,
∴如图对称轴与x轴的交点即为Q1,
∵OA=OQ1,BO⊥AQ1,
∴“当Q1B=AB时,设Q(1,q),
∴1+(q﹣3)2=10,
∴q=0,或q=6,
∴Q(1,0)或Q(1,6).
当Q2A=Q2B时,设Q2的坐标为(1,m),
∴22+m2=12+(3﹣m)2,
∴m=1,
∴Q2(1,1);
当Q3A=AB时,设Q3(1,n),
∴22+n2=12+32,
∴n=± ,
∴Q3(1,),Q4(1,﹣ ).
∴符合条件的Q点坐标为Q1(1,0),Q2(1,1),Q3(1,),Q4(1,﹣ ),Q5(1,6)..
看了 如图,直线y=3x+3交y轴...的网友还看了以下:
已知;抛物线Y=ax^2+2x+c,对称轴位直线x=-1,抛物线与y轴交与点c抛物线与Y轴交于点C 2020-05-16 …
如图,在直角坐标系中,抛物线y=ax^2+bx+c(a不等于0)与x轴交于点A(-1,0),B(3 2020-05-16 …
抛物线y=-x2+2x+3与x轴相交于a,b两点,点a在b的左边,与y轴相交于点c,抛物线顶点为d 2020-05-16 …
关于抛物线高中数学1,抛物线y=4x^2上的一点到直线y=4x-5的距离最短,则该点的坐标是?2. 2020-06-04 …
已知抛物线y=ax^2+2x+c的图像与x轴交于点A(3,0)和点c,与y轴交于点B(0,3)已知 2020-07-09 …
已知抛物线y=-x^2+2x.过抛物线上一点P(x,y)向直线y=5/4做垂线,垂足为M.请问:对 2020-07-14 …
如图,在平面直角坐标系xoy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y= 2020-08-03 …
如图,抛物线y=-14x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,52),直线y=kx 2020-11-01 …
一道数学题,急于求答案抛物线y平方=4x直线过此抛物线焦点,于抛物线交点为A,B就交点中点的轨迹不明 2020-12-19 …
在直角坐标系中,抛物线y=ax平方+bx+c(a不等于0)与x轴交点A(-1,0)、B(3,0)交y 2021-01-10 …