早教吧作业答案频道 -->其他-->
如图.矩形纸片OABC放在平面直角坐标系内 OA,OC分别与X轴 Y轴重合 OA=8 OC=4 将点B折叠到点O 折痕为EF 联结OE.BF求1.点EF坐标.2.直线EF解析式.图我描述下 矩形是在第一象限内的 C,B两点在上 O,A在下.
题目详情
如图.矩形纸片OABC放在平面直角坐标系内 OA,OC分别与X轴 Y轴重合 OA=8 OC=4 将点B折叠到点O 折痕为EF 联结OE.BF
求1.点EF坐标.2.直线EF解析式.
图我描述下 矩形是在第一象限内的 C,B两点在上 O,A在下.与X轴重合
注意!是初二数学题..不要用高年级的知识!
尽快!好的追加!
EF好像是任意点...拿张纸折一折就行了...
求1.点EF坐标.2.直线EF解析式.
图我描述下 矩形是在第一象限内的 C,B两点在上 O,A在下.与X轴重合
注意!是初二数学题..不要用高年级的知识!
尽快!好的追加!
EF好像是任意点...拿张纸折一折就行了...
▼优质解答
答案和解析
因为是折痕,所以四边形EBFO是菱形,
设这个菱形的边长为x
所以OF=BF.
则:BF^2=FA^2+AB^2
即:x^2=(8-x)^+4^2
解得:x=5
CE=BC-BE=8-5=3
即:E(3,4)
F(5,0)
因为直线OBR的斜率=4/8=1/2:
所以直线EF的斜率=-2,
直线EF的关系式为:
y=-2x+10
验算:当x=5时,y=0,即E点E(5,0)
当x=3时,y=4,即F点F(3,4)
设这个菱形的边长为x
所以OF=BF.
则:BF^2=FA^2+AB^2
即:x^2=(8-x)^+4^2
解得:x=5
CE=BC-BE=8-5=3
即:E(3,4)
F(5,0)
因为直线OBR的斜率=4/8=1/2:
所以直线EF的斜率=-2,
直线EF的关系式为:
y=-2x+10
验算:当x=5时,y=0,即E点E(5,0)
当x=3时,y=4,即F点F(3,4)
看了 如图.矩形纸片OABC放在平...的网友还看了以下:
如图,AC为圆O的直径,△ABD为圆O的内接三角形,AB=BD,BD交AC于F点,BE//AD交A 2020-04-27 …
(1)割线AC与圆O相交于B,C两点,E是弧BC的中点,D是圆O上一点,若角EDA=角AMD证:A 2020-05-13 …
如图,矩形ABCD中,AC与BD相交于点哦O,角ACB=30度,AC=16,将矩形ABCD绕点O旋 2020-06-04 …
点C是半圆O半径OB上动点,做PC垂直AB于C,D是半圆上位于PC左侧的点,连结BD交PC于E点C 2020-07-17 …
如图,⊙O的直径AB⊥CD于E,点M为⊙O上一点,tan∠CDA=1/2.(1)求证:BE=CD( 2020-07-28 …
如图,已知AB是圆O的直径,点C、D在圆O上,点E在圆O外,角EAC=角D=60°(1)求证:A如 2020-07-31 …
如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙ 2020-08-01 …
如图,在△ABC中,点O是AC边上的一个动点,过O点作直线MN‖BC,设MN交∠BCA的平分线于点 2020-08-03 …
已知在梯形ABCD中,E点和O点都是所在边的中点,且S三角形EOD=28平方米,求S三角形ABO的面 2020-11-03 …
已知:AB为⊙O的直径,C是⊙O外一点,BC交⊙O于点E,AC交⊙O于点D,∠DOE=60º.求∠C 2020-11-27 …