早教吧作业答案频道 -->数学-->
已知a1^2+a2^2+...an^2=1,x1^2+x2^2+...+xn^2=1,求证 a1x1+a2x2+...+anxn ≤ 1
题目详情
已知a1^2+a2^2+...an^2=1,x1^2+x2^2+...+xn^2=1,求证 a1x1+a2x2+...+anxn ≤ 1
▼优质解答
答案和解析
可以用均值不等式证明.
2a1·x1 ≤ a1²+x1²,
2a2·x2 ≤ a2²+x2²,
...
2an·xn ≤ an²+xn².
相加即2(a1·x1+a2·x2+...+an·xn) ≤ (a1²+a2²+...+an²)+(x1²+x2²+...+xn²) = 2.
也即a1·x1+a2·x2+...+an·xn ≤ 1.
也可以套用Cauchy不等式(其实上面就是一种用均值不等式证明Cauchy不等式的方法).
1 = (a1²+a2²+...+an²)(x1²+x2²+...+xn²) ≥ (a1·x1+a2·x2+...+an·xn)²,
因此a1·x1+a2·x2+...+an·xn ≤ 1.
2a1·x1 ≤ a1²+x1²,
2a2·x2 ≤ a2²+x2²,
...
2an·xn ≤ an²+xn².
相加即2(a1·x1+a2·x2+...+an·xn) ≤ (a1²+a2²+...+an²)+(x1²+x2²+...+xn²) = 2.
也即a1·x1+a2·x2+...+an·xn ≤ 1.
也可以套用Cauchy不等式(其实上面就是一种用均值不等式证明Cauchy不等式的方法).
1 = (a1²+a2²+...+an²)(x1²+x2²+...+xn²) ≥ (a1·x1+a2·x2+...+an·xn)²,
因此a1·x1+a2·x2+...+an·xn ≤ 1.
看了 已知a1^2+a2^2+.....的网友还看了以下:
已知函数f(x)=x/(2*x+1),数列{an}满足a[1]=1/2,a[n+1]=f(a[n] 2020-05-13 …
已知数列{log2 (an-1)}为等差数列,且a1=3 a3=9 (1)求an (2)证明1/( 2020-05-16 …
1.计算:cot(-15π/4)注:括号内是四分之十五派2.证明:(tanα+secα-1)/(t 2020-06-13 …
关於分式因解*后是次方1.已知x*4+6x*3+7x*2+ax+b是一个完全平方式,求a,b的值2 2020-06-16 …
已知数列an满足a1=7/3,a(n+1)=3a(n)-4n+2(1)求a2,a3的值(2)证明数 2020-07-09 …
已知S(1)、S(2),证(r+1)S(2)=(r-1)S(1)^2+2aS(1).S(1)=a+ 2020-07-22 …
已求出数列an的通项公式为an=n^2,证明对一切正整数n,有(1/a1)+(1/a2)+……+( 2020-07-30 …
如图,已知△ABC中,∠C=90°,AC=3,BC=2,点D在边AC上,DE⊥AB,垂足为点E,求 2020-07-30 …
已知数列an满足条件,a1=2,a2=3,2an+1=3an-an-1(n大于等于2证明an-1已 2020-08-03 …
已知a>b>0,求证a5+b5>a4b+ab4(2)已知a>2,b>2证明ab>a+b 2020-10-31 …