早教吧作业答案频道 -->数学-->
如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连接AD、BD.(1)求证:∠ADB=∠E;(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.(
题目详情
如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连接AD、BD.

(1)求证:∠ADB=∠E;
(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.
(3)当AB=5,BC=6时,求⊙O的半径.

(1)求证:∠ADB=∠E;
(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.
(3)当AB=5,BC=6时,求⊙O的半径.
▼优质解答
答案和解析
(1)证明:∵在△ABC中,AB=AC,
∴∠ABC=∠C.
∵DE∥BC,
∴∠ABC=∠E,
∴∠E=∠C,
又∵∠ADB=∠C,
∴∠ADB=∠E;
(2)当点D是弧BC的中点时,DE是⊙O的切线(如图1).
理由是:∵当点D是弧BC的中点时,AB=AC,
∴AD是BC的垂直平分线,
∴AD是直径,
∴AD⊥BC,
∴AD过圆心O,
又∵DE∥BC,
∴AD⊥ED.
∴DE是⊙O的切线;
(3)过点A作AF⊥BC于F,连接BO(如图2),
则点F是BC的中点,BF=
BC=3,
连接OF,则OF⊥BC(垂径定理),
∴A、O、F三点共线,
∵AB=5,
∴AF=4;
设⊙O的半径为r,在Rt△OBF中,OF=4-r,OB=r,BF=3,
∴r2=32+(4-r)2
解得r=
,
∴⊙O的半径是
.

∴∠ABC=∠C.
∵DE∥BC,
∴∠ABC=∠E,
∴∠E=∠C,
又∵∠ADB=∠C,
∴∠ADB=∠E;
(2)当点D是弧BC的中点时,DE是⊙O的切线(如图1).
理由是:∵当点D是弧BC的中点时,AB=AC,
∴AD是BC的垂直平分线,
∴AD是直径,
∴AD⊥BC,
∴AD过圆心O,
又∵DE∥BC,
∴AD⊥ED.
∴DE是⊙O的切线;
(3)过点A作AF⊥BC于F,连接BO(如图2),

则点F是BC的中点,BF=
1 |
2 |
连接OF,则OF⊥BC(垂径定理),
∴A、O、F三点共线,
∵AB=5,
∴AF=4;
设⊙O的半径为r,在Rt△OBF中,OF=4-r,OB=r,BF=3,
∴r2=32+(4-r)2
解得r=
25 |
8 |
∴⊙O的半径是
25 |
8 |
看了 如图,⊙O是△ABC的外接圆...的网友还看了以下:
矩形ABCD中,AD=6cm,AB=4cm,点E沿A往D方向在线段AD上移动,点F沿D到A方向在线段 2020-03-30 …
矩形ABCD中,AD=6cm,AB=4cm,点E沿A到D方向在线段AD上移动,点F沿D到A方向在线段 2020-03-30 …
几题数学题,1.同时都含有字母a,b,c,且系数为1的7次单项式共有( )个.A,4 B,12 C 2020-05-17 …
已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证: 2020-07-11 …
已知正三棱柱ABC-A1B1C1中,棱AA1=AB=a,且D,E分别为棱AA1,B1C1的中点.1 2020-07-12 …
已知正三棱柱ABC-A1B1C1中,棱AA1=AB=a,且D,E分别为棱AA1,B1C1的中点.1 2020-07-12 …
如图,三角形ABC中,D,E在AB上,且D,E分别是AC,BC的垂直平分线上一点 2020-07-22 …
若函数f(x)在R上可导,且f(x)>f'(x),当a>b时,下列不等式成立的是A.e^af(若函 2020-07-29 …
送分某电话号码格式如ABC-DEF-GHIJ,每个字母代表的数字不同.A>B>C且D>E>F且G> 2020-08-02 …
设随机变量服从指数分布,且D(X)=0.2,则E(X)=.设随机变量服从泊松分布,且D(X)=0.3 2020-11-06 …