早教吧作业答案频道 -->数学-->
(1).已知a,b都是正数,且a≠b,求证:2ab/a+b<(ab的开方)(2).已知a,b都是正数,求证:2/(1/a+1/b)≤ab开方≤(a+b)/2≤[(a^2+b^2)/2]开方(3).求证:一a^2+b^2+5≥2(2a-b)二a^2+b^2+c^2≥ab+bc+ca
题目详情
▼优质解答
答案和解析
没人给你做啊,看在老乡份上我给你做吧,不过要一个一个题打,别着急.
1.原式=a+b+1/根号ab 〉=2根号下((a+b)/根号ab) 〉=2倍跟号2.注意这两步取等号的条件.
2.由题意,将(1-a)(1-b)(1-c)中的1换成a+b+c得到(a+b)(b+c)(c+a),因为a+b>=2根号ab,b+c〉=2根号.然后相乘就得到结论
3.原不等式移项化简等价与证明b2c2+c2a2+a2b2-a2bc-b2ac-c2ba〉=0,给这个式子两边乘以2变形得到a2*(b-c)2+b2*(a-c)2+c2*(a-b)2>=0 这个显然成立
4.将1/a-1画简成(a+b+c)/a-1=(b+c)/a>=(2根号bc)/a
其他两项也这么化简相乘就得到结果.
完了,写得比较简单,希望你好好想想.不懂再问吧
1.原式=a+b+1/根号ab 〉=2根号下((a+b)/根号ab) 〉=2倍跟号2.注意这两步取等号的条件.
2.由题意,将(1-a)(1-b)(1-c)中的1换成a+b+c得到(a+b)(b+c)(c+a),因为a+b>=2根号ab,b+c〉=2根号.然后相乘就得到结论
3.原不等式移项化简等价与证明b2c2+c2a2+a2b2-a2bc-b2ac-c2ba〉=0,给这个式子两边乘以2变形得到a2*(b-c)2+b2*(a-c)2+c2*(a-b)2>=0 这个显然成立
4.将1/a-1画简成(a+b+c)/a-1=(b+c)/a>=(2根号bc)/a
其他两项也这么化简相乘就得到结果.
完了,写得比较简单,希望你好好想想.不懂再问吧
看了(1).已知a,b都是正数,且...的网友还看了以下:
已知实数a、b、c满足a2+ b 2=1,b 2+ c2=2,c2+ a2=2,则ab+bc+ca 2020-04-05 …
求一数列.高2.a(n+1)=2an/2an+1已知a1=1a(n+1)=2an/2an+1求数列 2020-04-25 …
(2x)^2+(-3)^2-(-2x)^2 (-1/4a^3n-1 b^m-1 )^2*(4a^3 2020-05-16 …
(2√3-√5)(√2+√3)=2√6+6-√10-√15(√a-√b)(a+√ab+√b)=a√ 2020-06-17 …
急数列{an}中,an+1=-an^2+2an,a1=t(t>0),且{an}是有界数列,求实数t 2020-06-23 …
一次函数,1.f(x)=2x+a,f(1)=4,求a的值2.设y=f(x)为一次函数,已知f(2) 2020-07-09 …
把下列各连化成最简整数比:(1)0.6:1..8:3.45(2)4又2分之1:3.6:0.81(3 2020-07-19 …
若1/a:1/b:1/c=2:3:4,则a:b:c帮我看一下..1.若1/a:1/b:1/c=2: 2020-07-31 …
一道微积分的题目求解.试确定常数A、B、C的值,使得e^x(1+Bx+Cx^2)=1+Ax+ο(x 2020-08-02 …
基本不等式设数列a(n),b(n),且a(1)>b(1)>0,a(n)=(a(n-1)+b(n-1 2020-08-03 …