早教吧作业答案频道 -->数学-->
在直角梯形ABCD中,AD‖BC,∠ABC=90º,AB=BC,E为AB边上一点,∠BCE=15º,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③EH/BE=2;S△EDC/S△EHC=AH/CH.其中结论正确
题目详情
在直角梯形ABCD中,AD‖BC,∠ABC=90º,AB=BC,E为AB边上一点,∠BCE=15º,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③EH/BE=2;S△EDC/S△EHC=AH/CH.其中结论正确的是( ).
在直角梯形ABCD中,AD‖BC,∠ABC=90º,AB=BC,E为AB边上一点,∠BCE=15º,且AE=AD。连接DE交对角线AC于H,连接BH。下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③EH/BE=2;④S△EBC/S△EHC=AH/CH.其中结论正确的是( )。

在直角梯形ABCD中,AD‖BC,∠ABC=90º,AB=BC,E为AB边上一点,∠BCE=15º,且AE=AD。连接DE交对角线AC于H,连接BH。下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③EH/BE=2;④S△EBC/S△EHC=AH/CH.其中结论正确的是( )。

▼优质解答
答案和解析
1394171,
结论正确的是:⑴和⑵.
(1)∵△ADE和△ABC为等腰直角三角形.
∴∠aed=∠ade=∠bac=∠bca=45°
∴∠ahe=180-45-45=90°,即AH⊥DE
∴△AEH与△ADH为等腰直角三角形,两者全等:即△ACD≌△ACE.
(2)同时△CEH和CDH也全等,为直角三角形.
又∵∠hce=∠acb-∠ecb=45°-15°=30°
∴∠cde=∠ced=∠dce=60°
∴△CDE为等边三角形
(3)如果eh/be=2,那么Rt△ceh中,∠ech=30°
∴ce=2eh
∴be=eh
而△cbe中,ce为直角三角形斜边,be为直角边,肯定不相等
∴命题不成立;
(4)S△EDC/S△EHC=ED/EH=2;AH/CH=EH/CH=1/√3=(√3)/3
∴S△EDC/S△EHC≠AH/CH
∴命题不成立
结论正确的是:⑴和⑵.
(1)∵△ADE和△ABC为等腰直角三角形.
∴∠aed=∠ade=∠bac=∠bca=45°
∴∠ahe=180-45-45=90°,即AH⊥DE
∴△AEH与△ADH为等腰直角三角形,两者全等:即△ACD≌△ACE.
(2)同时△CEH和CDH也全等,为直角三角形.
又∵∠hce=∠acb-∠ecb=45°-15°=30°
∴∠cde=∠ced=∠dce=60°
∴△CDE为等边三角形
(3)如果eh/be=2,那么Rt△ceh中,∠ech=30°
∴ce=2eh
∴be=eh
而△cbe中,ce为直角三角形斜边,be为直角边,肯定不相等
∴命题不成立;
(4)S△EDC/S△EHC=ED/EH=2;AH/CH=EH/CH=1/√3=(√3)/3
∴S△EDC/S△EHC≠AH/CH
∴命题不成立
看了 在直角梯形ABCD中,AD‖...的网友还看了以下:
连字成词(英语)l u o e b s r u s r e t o s w a e s r t e 2020-05-14 …
质反应的累加曲线是()A.对称S型曲线B.长尾S型曲线C.直线D.双曲线E.正态分布曲线 2020-05-31 …
30之前给我答复,)一个数n的数字中为奇数的那些数字的和记为S(n),为偶数的那些数字的和记为E( 2020-06-05 …
A.根据释义,拼写单词.1.costingalotofmoneyx,p,s,i,e,e,e,n,v 2020-06-10 …
已知抛物线E:y=(1/4)x^2在点A(2,1)处的切线交y轴于点B(1)求直线AB的方程(2) 2020-06-14 …
已知圆C:(x+1)2+y2=8,过D(1,0)且与圆C相切的动圆圆心为P,(1)求点P的轨迹E的 2020-07-26 …
类比“两角和与差的正弦、余弦公式”的形式,对于给定的两个函数S(x)=[e^x-e^(-x)]/2 2020-08-03 …
(2012•怀化二模)程序框图如图所示,已知曲线E的方程为ax2+by2=ab(a,b∈R),若该程 2020-11-12 …
英语:下1.将下联打乱的字母组成单词,并写出汉语意思1.a,e,h,g,c,n[]2.e,i,s,t 2020-12-10 …
英语翻译欧姆对导线中的电流进行了研究.他于1826年发表了实验结果.1827年他又在《电路的数学研究 2021-01-13 …