早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在直角梯形ABCD中,AD‖BC,∠ABC=90º,AB=BC,E为AB边上一点,∠BCE=15º,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③EH/BE=2;S△EDC/S△EHC=AH/CH.其中结论正确

题目详情
在直角梯形ABCD中,AD‖BC,∠ABC=90º,AB=BC,E为AB边上一点,∠BCE=15º,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③EH/BE=2;S△EDC/S△EHC=AH/CH.其中结论正确的是( ).
在直角梯形ABCD中,AD‖BC,∠ABC=90º,AB=BC,E为AB边上一点,∠BCE=15º,且AE=AD。连接DE交对角线AC于H,连接BH。下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③EH/BE=2;④S△EBC/S△EHC=AH/CH.其中结论正确的是( )。
▼优质解答
答案和解析
1394171,
结论正确的是:⑴和⑵.
(1)∵△ADE和△ABC为等腰直角三角形.
∴∠aed=∠ade=∠bac=∠bca=45°
∴∠ahe=180-45-45=90°,即AH⊥DE
∴△AEH与△ADH为等腰直角三角形,两者全等:即△ACD≌△ACE.
(2)同时△CEH和CDH也全等,为直角三角形.
又∵∠hce=∠acb-∠ecb=45°-15°=30°
∴∠cde=∠ced=∠dce=60°
∴△CDE为等边三角形
(3)如果eh/be=2,那么Rt△ceh中,∠ech=30°
∴ce=2eh
∴be=eh
而△cbe中,ce为直角三角形斜边,be为直角边,肯定不相等
∴命题不成立;
(4)S△EDC/S△EHC=ED/EH=2;AH/CH=EH/CH=1/√3=(√3)/3
∴S△EDC/S△EHC≠AH/CH
∴命题不成立