早教吧作业答案频道 -->数学-->
已知函数fx=ax+lnx ( a属于R) 1,若a等于2,求曲线y=fx在x=1处上切线的斜率已知函数fx=ax+lnx ( a属于R) 1,若a等于2,求曲线y=fx在x=1处上切线的斜率.2,求fx的单调区间3.设gx=x²-2x+2,若对于任意x1属
题目详情
已知函数fx=ax+lnx ( a属于R) 1,若a等于2,求曲线y=fx在x=1处上切线的斜率
已知函数fx=ax+lnx ( a属于R)
1,若a等于2,求曲线y=fx在x=1处上切线的斜率.2,求fx的单调区间
3.设gx=x²-2x+2,若对于任意x1属于﹙0,正无穷﹚,均存在x2属于[0,1],使得fx1
已知函数fx=ax+lnx ( a属于R)
1,若a等于2,求曲线y=fx在x=1处上切线的斜率.2,求fx的单调区间
3.设gx=x²-2x+2,若对于任意x1属于﹙0,正无穷﹚,均存在x2属于[0,1],使得fx1

▼优质解答
答案和解析
(Ⅰ)由已知 f′(x)=2+1x(x>0),则f'(1)=2+1=3.
故曲线y=f(x)在x=1处切线的斜率为3;
(Ⅱ) f′(x)=a+1x=ax+1x(x>0).
①当a≥0时,由于x>0,故ax+1>0,f'(x)>0
所以,f(x)的单调递增区间为(0,+∞).
②当a<0时,由f'(x)=0,得 x=-1a.
在区间 (0,-1a)上,f'(x)>0,在区间 (-1a,+∞)上f'(x)<0,
所以,函数f(x)的单调递增区间为 (0,-1a),单调递减区间为 (-1a,+∞);
(Ⅲ)由已知,转化为f(x)max<g(x)min.
由x∈[0,1],得到g(x)min=g(-1)=1,
由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.
当a<0时,f(x)在 (0,-1a)上单调递增,在 (-1a,+∞)上单调递减,
故f(x)的极大值即为最大值, f(-1a)=-1+ln(1-a)=-1-ln(-a),
所以1>-1-ln(-a),解得 a<-1e2.
故曲线y=f(x)在x=1处切线的斜率为3;
(Ⅱ) f′(x)=a+1x=ax+1x(x>0).
①当a≥0时,由于x>0,故ax+1>0,f'(x)>0
所以,f(x)的单调递增区间为(0,+∞).
②当a<0时,由f'(x)=0,得 x=-1a.
在区间 (0,-1a)上,f'(x)>0,在区间 (-1a,+∞)上f'(x)<0,
所以,函数f(x)的单调递增区间为 (0,-1a),单调递减区间为 (-1a,+∞);
(Ⅲ)由已知,转化为f(x)max<g(x)min.
由x∈[0,1],得到g(x)min=g(-1)=1,
由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.
当a<0时,f(x)在 (0,-1a)上单调递增,在 (-1a,+∞)上单调递减,
故f(x)的极大值即为最大值, f(-1a)=-1+ln(1-a)=-1-ln(-a),
所以1>-1-ln(-a),解得 a<-1e2.
看了 已知函数fx=ax+lnx ...的网友还看了以下:
英语翻译1.不若燔土的“若”2.有奇字素无备者,旋刻之的“之”代指什么3.用讫再火令药熔,以手拂之的 2020-03-31 …
已知集合A={2,4,x^2-5x+9},B={3,x^2+ax+a}.C={x^2+(a+1)x 2020-04-05 …
1、已知f(cosx)=sin2x,则f(sin30°)的值为2、在△ABC中,角A、B、C所对的 2020-04-27 …
(2011•北京模拟)设随机变量X的分布函数为:F(x)=P(X≤x)=0,若x<−20.2,若− 2020-05-13 …
数列an的前n项和为sn,存在常数A,B,C使得an+sn=An^2+Bn+C对任意正整数n都成立 2020-05-16 …
k取何值时,关于x的方程2(x-1)=kx+1的解是(1)正数;(2)负数;(3)零还有几题,(1 2020-05-16 …
已知 X^2-X^-2=3,求X^4+X^-4的值 若2^3m=A,则16^6m-1等于 若X=1 2020-05-17 …
质量为10kg的物体受到大小为50N的推力F作用.推力F作用方向分别是水平、与水平线成37°向上和 2020-05-21 …
设A=2*x的2次方-3xy+y的2次方+x-3y,B=4*x的2次方-6xy+2*y的的2次方+ 2020-06-03 …
如果a※b表示a×b-a+1,试求1/2※2的值,若2※x=0求x的值 2020-06-08 …