早教吧作业答案频道 -->数学-->
已知函数fx=ax+lnx ( a属于R) 1,若a等于2,求曲线y=fx在x=1处上切线的斜率已知函数fx=ax+lnx ( a属于R) 1,若a等于2,求曲线y=fx在x=1处上切线的斜率.2,求fx的单调区间3.设gx=x²-2x+2,若对于任意x1属
题目详情
已知函数fx=ax+lnx ( a属于R) 1,若a等于2,求曲线y=fx在x=1处上切线的斜率
已知函数fx=ax+lnx ( a属于R)
1,若a等于2,求曲线y=fx在x=1处上切线的斜率.2,求fx的单调区间
3.设gx=x²-2x+2,若对于任意x1属于﹙0,正无穷﹚,均存在x2属于[0,1],使得fx1
已知函数fx=ax+lnx ( a属于R)
1,若a等于2,求曲线y=fx在x=1处上切线的斜率.2,求fx的单调区间
3.设gx=x²-2x+2,若对于任意x1属于﹙0,正无穷﹚,均存在x2属于[0,1],使得fx1

▼优质解答
答案和解析
(Ⅰ)由已知 f′(x)=2+1x(x>0),则f'(1)=2+1=3.
故曲线y=f(x)在x=1处切线的斜率为3;
(Ⅱ) f′(x)=a+1x=ax+1x(x>0).
①当a≥0时,由于x>0,故ax+1>0,f'(x)>0
所以,f(x)的单调递增区间为(0,+∞).
②当a<0时,由f'(x)=0,得 x=-1a.
在区间 (0,-1a)上,f'(x)>0,在区间 (-1a,+∞)上f'(x)<0,
所以,函数f(x)的单调递增区间为 (0,-1a),单调递减区间为 (-1a,+∞);
(Ⅲ)由已知,转化为f(x)max<g(x)min.
由x∈[0,1],得到g(x)min=g(-1)=1,
由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.
当a<0时,f(x)在 (0,-1a)上单调递增,在 (-1a,+∞)上单调递减,
故f(x)的极大值即为最大值, f(-1a)=-1+ln(1-a)=-1-ln(-a),
所以1>-1-ln(-a),解得 a<-1e2.
故曲线y=f(x)在x=1处切线的斜率为3;
(Ⅱ) f′(x)=a+1x=ax+1x(x>0).
①当a≥0时,由于x>0,故ax+1>0,f'(x)>0
所以,f(x)的单调递增区间为(0,+∞).
②当a<0时,由f'(x)=0,得 x=-1a.
在区间 (0,-1a)上,f'(x)>0,在区间 (-1a,+∞)上f'(x)<0,
所以,函数f(x)的单调递增区间为 (0,-1a),单调递减区间为 (-1a,+∞);
(Ⅲ)由已知,转化为f(x)max<g(x)min.
由x∈[0,1],得到g(x)min=g(-1)=1,
由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.
当a<0时,f(x)在 (0,-1a)上单调递增,在 (-1a,+∞)上单调递减,
故f(x)的极大值即为最大值, f(-1a)=-1+ln(1-a)=-1-ln(-a),
所以1>-1-ln(-a),解得 a<-1e2.
看了 已知函数fx=ax+lnx ...的网友还看了以下:
初中电学(电学高手进)1.两个完全相同的验电器,分别带上不等量的异种电荷,现将它们的金属球用一根绝 2020-04-26 …
一道简单不等式(1)已知不等式ax2-x-2>0在a属于[1,2]上恒成立,求x的取值范围(2)已 2020-04-27 …
已知-1小于等于x小于等于1,n大于等于2,且n属于N正,求证:(1-x)的n次方+(1+x)的n 2020-05-13 …
已知公差不为0的等差数列{an}的首项为a(a属于R),且1/a1,1/a2,1/a3成等比数列. 2020-05-13 …
已知函数fx=ax+lnx ( a属于R) 1,若a等于2,求曲线y=fx在x=1处上切线的斜率已 2020-05-15 …
已知函数f(x)=|x-5|-1(1)解不等式f(x)小于等于4(2)若存在x属于R,使不等式f( 2020-05-20 …
1.设a属于R,函数f(x)=x^2+ax+4(1)解不等式f(x)+f(-x)<10x(2)求f 2020-06-05 …
急求高次不等式1)设不等式ax^2-(a+1)x-3>0对一切a属于(1,2]都成立,求x的范围. 2020-06-10 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
求取值范围求满足下列条件的a的取值范围:(1)不等式|ax-3|>=3x-5在x属于[5/3,2] 2020-08-03 …