早教吧作业答案频道 -->数学-->
已知函数(f)=2/x+alnx-2(a>0)(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂
题目详情
已知函数(f)=2/x+alnx-2(a>0)(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂
▼优质解答
答案和解析
已知函数f(x)=2/x+alnx-2(a>0)
(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,球函数的y=f(x)单调区间;
(2)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间[e^-1,e]上有两个零点,求实数b的取值范围.
(1)f(x)=2/x+alnx-2 =>f'(x)= -2/x²+a/x => f'(1)=a-2=-1(与直线垂直) =>a=1
f'(x)= -2/x²+1/x (x>0)可得到:(0,2)单减;(2,+∞)单增
(2)g(x)=2/x+lnx+x-b-2 => g'(x)= -2/x²+1/x+1 => g(x):(1/e,1)单减;(1,e)单增 最小值为g(1)
那么有两个零点,只需:g(1) b∈(1,2/e+e-1]
(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,球函数的y=f(x)单调区间;
(2)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间[e^-1,e]上有两个零点,求实数b的取值范围.
(1)f(x)=2/x+alnx-2 =>f'(x)= -2/x²+a/x => f'(1)=a-2=-1(与直线垂直) =>a=1
f'(x)= -2/x²+1/x (x>0)可得到:(0,2)单减;(2,+∞)单增
(2)g(x)=2/x+lnx+x-b-2 => g'(x)= -2/x²+1/x+1 => g(x):(1/e,1)单减;(1,e)单增 最小值为g(1)
那么有两个零点,只需:g(1) b∈(1,2/e+e-1]
看了 已知函数(f)=2/x+al...的网友还看了以下:
提先谢谢了,越快越好1.求下列函数的值:(1)已知f(x)=|x-2|分之x+1,求f(0),f( 2020-04-27 …
已知f(0)=1,f(p-q)=f(p)-q(2p-q+1).求f(x)我没有思路.请大家帮个忙 2020-05-13 …
求函数f(x)=x^3+ax^2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为 2020-05-15 …
定义在(-1,1)上的函数f(x)-f(y)=f((x-y)/(1-xy)),当X∈(-1,0), 2020-06-09 …
给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点 2020-07-04 …
已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1( 2020-07-09 …
自考.工程经济学.(F/P,8%,5)=1.469(P/F,8%,5)=0.6806(F/A,8% 2020-07-18 …
为什么要提高交通工具的最大行驶速度,要减小运动阻力用F=MA可以,因为F-f=MA所以加速度变小,可 2020-11-30 …
f(x+1)=-f(1-x)变换:把f(x)往右平移一个单位所以原来的等式变成了f(x)=-f(x+ 2021-01-07 …
己知f(x)是R上的增函数,且f(-1)=-1,f(2)=2,设P={x|f(x+t)<2},Q={ 2021-01-12 …