早教吧作业答案频道 -->数学-->
正比例函数y=k1x和反比例函数y=x分之k2的图像交于A,B两点,点A的横坐标为2,b点纵坐标为-3,求A,B的坐标,求他们的解析式
题目详情
正比例函数y=k1x和反比例函数y=x分之k2的图像交于A,B两点,点A的横坐标为2,b点纵坐标为-3
,求A,B的坐标,求他们的解析式
,求A,B的坐标,求他们的解析式
▼优质解答
答案和解析
将点A的横坐标2分别代入两函数的表达式,得y=2k1,y=(k2)/2
∵点A是两个函数图象的交点,
则它们的函数值y相等,
∴2k1=(k2)/2………………①
将点B的纵坐标-3分别代入两函数的表达式,得-3=k1x,-3=(k2)/x
∴x=-3/(k1),x=(k2)/(-3)
∵点B是两个函数图象的交点,
则它们的横坐标x值相等,
∴-3/(k1)=(k2)/(-3)…………②
由①、②组成方程组{2k1=(k2)/2 ………………①
-3/(k1)=(k2)/(-3)…………②
解得:{k1=3/2 或{k1=-3/2
k2= 6 k2= -6
∴有两种情况:
(1)正比例函数为y=(3/2)x,反比例函数为y=6/x;
或(2)正比例函数为y=(-3/2)x,反比例函数为y=-6/x;
对第一种情况:
当正比例函数为y=(3/2)x,反比例函数为y=6/x;
将x=2代入y=(3/2)x,得y=3; ∴点A的坐标是(2,3)
将y=-3代入y=(3/2)x,得(3/2)x=-3,解得:x=-2 ∴点B的坐标是(-2,-3)
对第二种情况:
当正比例函数为y=(-3/2)x,反比例函数为y=-6/x;
将x=2代入y=(-3/2)x,得y=-3; ∴点A的坐标是(2,-3)
将y=-3代入y=(-3/2)x,得(-3/2)x=-3,解得:x=2 ∴点B的坐标是(2,-3)
此时A、B为同一个点,显然不合题意,则第二种情况应舍去.
综上所述,点A的坐标是(2,3),点B的坐标是(-2,-3),
正比例函数为y=(3/2)x,反比例函数为y=6/x
∵点A是两个函数图象的交点,
则它们的函数值y相等,
∴2k1=(k2)/2………………①
将点B的纵坐标-3分别代入两函数的表达式,得-3=k1x,-3=(k2)/x
∴x=-3/(k1),x=(k2)/(-3)
∵点B是两个函数图象的交点,
则它们的横坐标x值相等,
∴-3/(k1)=(k2)/(-3)…………②
由①、②组成方程组{2k1=(k2)/2 ………………①
-3/(k1)=(k2)/(-3)…………②
解得:{k1=3/2 或{k1=-3/2
k2= 6 k2= -6
∴有两种情况:
(1)正比例函数为y=(3/2)x,反比例函数为y=6/x;
或(2)正比例函数为y=(-3/2)x,反比例函数为y=-6/x;
对第一种情况:
当正比例函数为y=(3/2)x,反比例函数为y=6/x;
将x=2代入y=(3/2)x,得y=3; ∴点A的坐标是(2,3)
将y=-3代入y=(3/2)x,得(3/2)x=-3,解得:x=-2 ∴点B的坐标是(-2,-3)
对第二种情况:
当正比例函数为y=(-3/2)x,反比例函数为y=-6/x;
将x=2代入y=(-3/2)x,得y=-3; ∴点A的坐标是(2,-3)
将y=-3代入y=(-3/2)x,得(-3/2)x=-3,解得:x=2 ∴点B的坐标是(2,-3)
此时A、B为同一个点,显然不合题意,则第二种情况应舍去.
综上所述,点A的坐标是(2,3),点B的坐标是(-2,-3),
正比例函数为y=(3/2)x,反比例函数为y=6/x
看了 正比例函数y=k1x和反比例...的网友还看了以下:
已知直线y=kx+b与y=3x平行,与y=1/2x+2交于Y轴上一点,则K= ,B= 直线的解析式 2020-05-16 …
抛物线关于x轴、y轴、原点对称的公式比如y=x的平方-2x-3关于x轴对称解析式变为:关于y轴对称 2020-05-16 …
1直线L平行于y等于-4X.且过点(-1,7),求一次函数的解析式2,一次函数经过直线y=-X+3 2020-06-03 …
已知抛物线y=-x^2+2x-3(1)它关于x轴对称的抛物线解析式为()(2)它关于y轴对称的抛物 2020-06-07 …
如图所示,已知抛物线C1、C2关于x轴对称,抛物线C1,C3关于y轴对称,如果抛物线C2的解析式是 2020-07-09 …
已知一次函数y=2x-6,作它关于x轴的对称的图像,并求它的解析式.关于y轴对称呢?从中你能发现什 2020-07-13 …
求满足以下条件的直线的函数解析式:(1)若直线与直线y=2x+3关于x轴对称(2)若直线与直线y= 2020-07-17 …
一条一次函数的图像关于任何一条一次函数的图像对称后的直线的函数解析式的规律比如说y等于x加3关于y 2020-07-25 …
抛物线y=3(x-2)2-2关于x轴对称的抛物线解析式为,关于y轴对称的解析式为,关于原点对称的p 2020-07-26 …
二次函数y=ax2+bx+c的图像关于X轴对称的解析式二次函数y=ax2+bx+c的图像关于y轴对 2020-08-01 …