早教吧作业答案频道 -->数学-->
如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.
题目详情
如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).
(1)求点B的坐标;
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.

(1)求点B的坐标;
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.

▼优质解答
答案和解析
答:
1)f(x)对称轴x=-1,与x轴交点A(-3,0),则另外一个交点B与A关于
对称轴x=-1对称,所以:
点B为(1,0)
2)a=1,对称轴x=-b/(2a)=-b/2=-1,b=2
f(x)=x^2+2x+c
点B(1,0)代入得:f(1)=1+2+c=0,c=-3
f(x)=x^2+2x-3
与y轴的交点为C(0,-3),设点P为(p,p^2+2p-3)
2.1)
S△POC=4S△BOC
所以:|OC|*|p|/2=4*|OC|*|OB|/2
|p|=4|OB|=4
p=-4或者p=4
所以:点P为(-4,5)或者(4,21)
2.2)
AC直线为y=-x-3,设点Q为(q,-q-3),-3
1)f(x)对称轴x=-1,与x轴交点A(-3,0),则另外一个交点B与A关于
对称轴x=-1对称,所以:
点B为(1,0)
2)a=1,对称轴x=-b/(2a)=-b/2=-1,b=2
f(x)=x^2+2x+c
点B(1,0)代入得:f(1)=1+2+c=0,c=-3
f(x)=x^2+2x-3
与y轴的交点为C(0,-3),设点P为(p,p^2+2p-3)
2.1)
S△POC=4S△BOC
所以:|OC|*|p|/2=4*|OC|*|OB|/2
|p|=4|OB|=4
p=-4或者p=4
所以:点P为(-4,5)或者(4,21)
2.2)
AC直线为y=-x-3,设点Q为(q,-q-3),-3
看了 如图,对称轴为直线x=-1的...的网友还看了以下:
已知△ABC的三个顶点A(-1,0),B(1,0),C(3,2),其外接圆为圆H(2)对于线段BH 2020-04-27 …
已知圆c的圆心在直线x-y-4=0上,并且通过两圆c1:x^2 y^2-4x-3=0和c2:x^2 2020-05-16 …
已知圆c的圆心在函数y=x2的图像上圆C在y轴上截得的线段长为8若圆C过原点求圆C的方程 2020-07-07 …
已知圆C的圆心在直线X-2Y-3=0上,且过A(2,-3),B(-2,-5)二点,求圆C的方程. 2020-07-20 …
已知直线l:y=3分之根号3(x-1)与圆心在x轴上的圆c相切与点T,且与双曲线C:x^2-y^2 2020-07-22 …
.已知⊙C的参数方程为,(为参数),是⊙C与轴正半轴的交点,以圆心C为极点,轴正半轴为极轴建立极坐 2020-07-31 …
在极坐标系中,已知圆C经过点P(根号2,π/4),圆心为直线ρsin(θ-π/3)=-√3/2与极 2020-07-31 …
如图,抛物线y=ax^2+bx+c与x轴交于AB两点(点A在点B左侧),与y轴交于点C(0,-3) 2020-08-03 …
如图,抛物线y=ax^2+bx+c与x轴交于AB两点(点A在点B左侧),与y轴交于点C(0,-3) 2020-08-03 …
救急,五分钟搞定.已知圆C的圆心在直线L:x-2y-1=0上,并且经过A(2,1)、B(1,2)两点 2020-12-19 …