早教吧作业答案频道 -->数学-->
如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.
题目详情
如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).
(1)求点B的坐标;
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.

(1)求点B的坐标;
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.

▼优质解答
答案和解析
答:
1)f(x)对称轴x=-1,与x轴交点A(-3,0),则另外一个交点B与A关于
对称轴x=-1对称,所以:
点B为(1,0)
2)a=1,对称轴x=-b/(2a)=-b/2=-1,b=2
f(x)=x^2+2x+c
点B(1,0)代入得:f(1)=1+2+c=0,c=-3
f(x)=x^2+2x-3
与y轴的交点为C(0,-3),设点P为(p,p^2+2p-3)
2.1)
S△POC=4S△BOC
所以:|OC|*|p|/2=4*|OC|*|OB|/2
|p|=4|OB|=4
p=-4或者p=4
所以:点P为(-4,5)或者(4,21)
2.2)
AC直线为y=-x-3,设点Q为(q,-q-3),-3
1)f(x)对称轴x=-1,与x轴交点A(-3,0),则另外一个交点B与A关于
对称轴x=-1对称,所以:
点B为(1,0)
2)a=1,对称轴x=-b/(2a)=-b/2=-1,b=2
f(x)=x^2+2x+c
点B(1,0)代入得:f(1)=1+2+c=0,c=-3
f(x)=x^2+2x-3
与y轴的交点为C(0,-3),设点P为(p,p^2+2p-3)
2.1)
S△POC=4S△BOC
所以:|OC|*|p|/2=4*|OC|*|OB|/2
|p|=4|OB|=4
p=-4或者p=4
所以:点P为(-4,5)或者(4,21)
2.2)
AC直线为y=-x-3,设点Q为(q,-q-3),-3
看了 如图,对称轴为直线x=-1的...的网友还看了以下:
如图①,抛物线y=ax2+bx的对称轴为直线x=-3/2,且抛物线经过点A(-4,2),AB平行于 2020-05-15 …
已知;抛物线Y=ax^2+2x+c,对称轴位直线x=-1,抛物线与y轴交与点c抛物线与Y轴交于点C 2020-05-16 …
如图,在直角坐标系中,抛物线y=ax^2+bx+c(a不等于0)与x轴交于点A(-1,0),B(3 2020-05-16 …
抛物线y=-x2+2x+3与x轴相交于a,b两点,点a在b的左边,与y轴相交于点c,抛物线顶点为d 2020-05-16 …
(2012•锦州)如图,抛物线y=ax2+bx-3交y轴于点C,直线l为抛物线的对称轴,点P在第三 2020-06-11 …
已知某隧道截面拱形为抛物线形,拱顶离地面10米,底部宽20米.(1)建立如图1所示的平面直角坐标系 2020-07-05 …
已知直线y=-x+2与x轴交于A点,与y轴交于B点,一抛物线经过A,B两点且对称轴为x=2求:1, 2020-07-22 …
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交 2020-11-04 …
抛物线y=ax2+bx+c交x轴于A、B两点,交y于点C,已知抛物线的对称轴为x=1B(3,0),C 2020-11-27 …
二次函数高手入!NO.1抛物线y=ax^2+bx+c当c大于0时,抛物线交y轴正半轴,c小于0时,抛 2020-12-08 …