早教吧作业答案频道 -->数学-->
如图,抛物线y=ax^2+bx+c与x轴交于AB两点(点A在点B左侧),与y轴交于点C(0,-3),对称轴是直线x=1(1)求抛物线的函数解析式(2)求直线BC的函数表达式(3)点E为对称轴上一动点,求点E在何位置时,三
题目详情
如图,抛物线y=ax^2+bx+c与x轴交于A B两点(点A在点B左侧),与y轴交于点C(0,-3),对称轴是直线x=1
(1)求抛物线的函数解析式
(2)求直线BC的函数表达式
(3)点E为对称轴上一动点,求点E在何位置时,三角形ACE的周长最小,并求最小周长
(1)求抛物线的函数解析式
(2)求直线BC的函数表达式
(3)点E为对称轴上一动点,求点E在何位置时,三角形ACE的周长最小,并求最小周长
▼优质解答
答案和解析
(1)y=ax^2 bx c
抛物线的对称轴为x=1,B(3,0),所以X轴另一个交点A(-1,0)
将A,B,C三点分别代入公式
0=a-b c
0=9a 3b c
-3=c
a=1,b=-2,c=-3
y=x^2-2x-3
(2)
设P(1,y)
|PB|^2=y^2 4>=4 (y=0时取得最小值4)
|PC|^2=(y 3)^2 1=y^2 6y 10=(y 3)^2 1>=1 (在y=-3时取得最小值1)
|PB|-|PC|=√(y^2 4)-√(y^2 6y 10)
当|PB|=|PC|时能取得最小值0,不能取得最大值,最小时y=-1
(3)
平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,所以MN两点关于x=1对称
设圆的半径为R
所以M(1-R,R),N(1 R,R)
代入曲线方程
R=(1-R)^2-2(1-R)-3
R=(1 √17)/2,R=(1-√17)/2(舍去)
即圆的半径为(1 √17)/2
抛物线的对称轴为x=1,B(3,0),所以X轴另一个交点A(-1,0)
将A,B,C三点分别代入公式
0=a-b c
0=9a 3b c
-3=c
a=1,b=-2,c=-3
y=x^2-2x-3
(2)
设P(1,y)
|PB|^2=y^2 4>=4 (y=0时取得最小值4)
|PC|^2=(y 3)^2 1=y^2 6y 10=(y 3)^2 1>=1 (在y=-3时取得最小值1)
|PB|-|PC|=√(y^2 4)-√(y^2 6y 10)
当|PB|=|PC|时能取得最小值0,不能取得最大值,最小时y=-1
(3)
平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,所以MN两点关于x=1对称
设圆的半径为R
所以M(1-R,R),N(1 R,R)
代入曲线方程
R=(1-R)^2-2(1-R)-3
R=(1 √17)/2,R=(1-√17)/2(舍去)
即圆的半径为(1 √17)/2
看了 如图,抛物线y=ax^2+b...的网友还看了以下:
一次函数y=ax+b的图像过点P-3/2(负的三分之二),1,且与直线y=-3/4-2相交于X轴上 2020-04-08 …
f(x)是以T为周期的函数,试求函数f(ax+b)的周期f(ax+b+T)=f(ax+b)之中,a 2020-05-12 …
29.证明:(1)点A(a+2,b+2)与点B(b-4,a-6)关于4x+3y-11=0对称==> 2020-05-13 …
29.证明:(1)点A(a+2,b+2)与点B(b-4,a-6)关于4x+3y-11=0对称==> 2020-05-13 …
直线l1:y=ax+b与直线l2:y=kx+m在同一平面直角坐标系中的图象,则关于x的不等式ax+ 2020-06-27 …
神童请进1.以知y-(m+3)+n+8(m,n为常数)与x成正比例,求此函数与y轴交点坐标().2 2020-07-07 …
如图,已知A、B、C、D是平面直角坐标系中坐标轴上的点,且△AOB≌△COD,设直线AB的表达式为 2020-07-20 …
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是() 2020-07-31 …
求∫(dx)/(ax+b)^n(a≠0,n≠1).这是书上的解法∫(dx)/(ax+b)^n=1/a 2020-11-01 …
如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的 2020-11-28 …