早教吧作业答案频道 -->数学-->
25.(本题满分12分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、B(0,—3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线
题目详情
25.(本题满分12分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、B(0,—3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.
▼优质解答
答案和解析
(1)∵抛物线的对称轴为x=1,且A(-1,0),
∴B(3,0);
可设抛物线的解析式为y=a(x+1)(x-3),由于抛物线经过C(0,-3),
则有:a(0+1)(0-3)=-3,a=1;
∴y=(x+1)(x-3)=x2-2x-3;
(2)由于A、B关于抛物线的对称轴x=1对称,
那么M点为直线BC与x=1的交点;
由于直线BC经过C(0,-3),可设其解析式为y=kx-3,
则有:3k-3=0,k=1;
∴直线BC的解析式为y=x-3;
当x=1时,y=x-3=-2,即M(1,-2);
(3)设经过C点且与直线BC垂直的直线为直线l;
∵直线BC:y=x-3,
∴直线l的解析式为:y=-x-3;
当x=1时,y=-x-3=-4;
∴P(1,-4).
∴B(3,0);
可设抛物线的解析式为y=a(x+1)(x-3),由于抛物线经过C(0,-3),
则有:a(0+1)(0-3)=-3,a=1;
∴y=(x+1)(x-3)=x2-2x-3;
(2)由于A、B关于抛物线的对称轴x=1对称,
那么M点为直线BC与x=1的交点;
由于直线BC经过C(0,-3),可设其解析式为y=kx-3,
则有:3k-3=0,k=1;
∴直线BC的解析式为y=x-3;
当x=1时,y=x-3=-2,即M(1,-2);
(3)设经过C点且与直线BC垂直的直线为直线l;
∵直线BC:y=x-3,
∴直线l的解析式为:y=-x-3;
当x=1时,y=-x-3=-4;
∴P(1,-4).
看了 25.(本题满分12分)如图...的网友还看了以下:
初三2次函数丫1)将抛物线y=2x*2的图形先向左平移m个单位,再向上平移n个单位,得到抛物线经过 2020-04-27 …
已知,抛物线y=a(x-h)2+k的顶点坐标是(2,2),且抛物线经过点(0,1).(1)求a、h 2020-05-13 …
已知一条抛物线的开口方向、对称轴与函数y=5x平方;的图象相同,顶点的纵坐标为-2,且抛物线经过点 2020-05-16 …
1,抛物线经过(1,0)(-1,0)(2,6)求抛物线的解析式.2,已知二次函数的图像经过(1,1 2020-06-21 …
函数y=-3/4x-3的图像分别交x轴y轴于A,C两点.(1)在x轴上找点B,使△ACB∽△AOC 2020-07-20 …
如图,函数y=x-3的图象分别交x轴、y轴于点A、B,点C坐标为(-1,0).一条抛物线经过A、B 2020-07-20 …
如图,已知抛物线经过原点O,与x轴交于另一点A,它的对称轴x=2与x轴交于点C,直线y=2x+1经 2020-08-01 …
二次函数的交点式和顶点式怎么用啊!如图,已知抛物线y=ax^2+bx+c(a≠0)的对称轴为x=1 2020-08-02 …
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,且抛物线经过B(1,0)、C(0 2020-08-02 …
1.已知二次函数图像经过原点,且当x=2时,y有最小值-1,求二次函数的解析式2.已知抛物线经过点A 2020-12-08 …