早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM(1)判断CN、DM的关系,并说明理由(2)设CN、DM的交点为H,连接BH,如图二,求证△BCH是等腰三角形(3)将△ADM沿DM翻折得到△A’DM,延长

题目详情
如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM
(1)判断CN、DM的关系,并说明理由
(2)设CN、DM的交点为H,连接BH,如图二,求证△BCH是等腰三角形
(3)将△ADM沿DM翻折得到△A’DM,延长MA’交DC的延长线于点E,如图三,求tan∠DEM
是交DC的延长线于点E啊!图插不上去。
▼优质解答
答案和解析
(1)判断CN、DM的关系,并说明理由
显然三角形ADM≌三角形DNC
所以角AMD=角DNC,CN=MD
角AMD+角ADM=90度=角ADM+DNC=90度
所以角NHD=90度
所以CN、DM互相垂直且相等
(2)设CN、DM的交点为H,连接BH,如图二,求证△BCH是等腰三角形
连接BN,则NB=CN,即三角形BCN为等腰三角形
三角形CND∽三角形CDH
CH/DC=DC/NC,即CH/BC=BC/NC
角NCB为公共角
所以三角形NBC∽三角形BCH
所以三角形BCH也为等腰三角形
(3)将△ADM沿DM翻折得到△A’DM,延长MA’交DC的延长线于点E,如图三,求tan∠DEM ,
题目有错,将△ADM沿DM翻折得到△A’DM,延长MA’好像不能于DC相交,而是与BC相交于E
设正方形的边长=a
因为角AMD=角EMD,则有∠BME=2∠ADM
cos∠ADM=AD/MD=a/√[a^2+(a/2)^2]=2√5/5
cos∠BME=cos2∠ADM=2cos^2∠ADM-1=3/5
cos∠BME=MB/ME=a/2ME
ME=5a/6
则A'E=ME-MA'=5a/6-a/2=a/3
因为DA'=a
所以tan∠DEM =DA'/A'E=a/a/3=3