早教吧作业答案频道 -->数学-->
如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM(1)判断CN、DM的关系,并说明理由(2)设CN、DM的交点为H,连接BH,如图二,求证△BCH是等腰三角形(3)将△ADM沿DM翻折得到△A’DM,延长
题目详情
如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM
(1)判断CN、DM的关系,并说明理由
(2)设CN、DM的交点为H,连接BH,如图二,求证△BCH是等腰三角形
(3)将△ADM沿DM翻折得到△A’DM,延长MA’交DC的延长线于点E,如图三,求tan∠DEM
是交DC的延长线于点E啊!图插不上去。
(1)判断CN、DM的关系,并说明理由
(2)设CN、DM的交点为H,连接BH,如图二,求证△BCH是等腰三角形
(3)将△ADM沿DM翻折得到△A’DM,延长MA’交DC的延长线于点E,如图三,求tan∠DEM
是交DC的延长线于点E啊!图插不上去。
▼优质解答
答案和解析
(1)判断CN、DM的关系,并说明理由
显然三角形ADM≌三角形DNC
所以角AMD=角DNC,CN=MD
角AMD+角ADM=90度=角ADM+DNC=90度
所以角NHD=90度
所以CN、DM互相垂直且相等
(2)设CN、DM的交点为H,连接BH,如图二,求证△BCH是等腰三角形
连接BN,则NB=CN,即三角形BCN为等腰三角形
三角形CND∽三角形CDH
CH/DC=DC/NC,即CH/BC=BC/NC
角NCB为公共角
所以三角形NBC∽三角形BCH
所以三角形BCH也为等腰三角形
(3)将△ADM沿DM翻折得到△A’DM,延长MA’交DC的延长线于点E,如图三,求tan∠DEM ,
题目有错,将△ADM沿DM翻折得到△A’DM,延长MA’好像不能于DC相交,而是与BC相交于E
设正方形的边长=a
因为角AMD=角EMD,则有∠BME=2∠ADM
cos∠ADM=AD/MD=a/√[a^2+(a/2)^2]=2√5/5
cos∠BME=cos2∠ADM=2cos^2∠ADM-1=3/5
cos∠BME=MB/ME=a/2ME
ME=5a/6
则A'E=ME-MA'=5a/6-a/2=a/3
因为DA'=a
所以tan∠DEM =DA'/A'E=a/a/3=3
显然三角形ADM≌三角形DNC
所以角AMD=角DNC,CN=MD
角AMD+角ADM=90度=角ADM+DNC=90度
所以角NHD=90度
所以CN、DM互相垂直且相等
(2)设CN、DM的交点为H,连接BH,如图二,求证△BCH是等腰三角形
连接BN,则NB=CN,即三角形BCN为等腰三角形
三角形CND∽三角形CDH
CH/DC=DC/NC,即CH/BC=BC/NC
角NCB为公共角
所以三角形NBC∽三角形BCH
所以三角形BCH也为等腰三角形
(3)将△ADM沿DM翻折得到△A’DM,延长MA’交DC的延长线于点E,如图三,求tan∠DEM ,
题目有错,将△ADM沿DM翻折得到△A’DM,延长MA’好像不能于DC相交,而是与BC相交于E
设正方形的边长=a
因为角AMD=角EMD,则有∠BME=2∠ADM
cos∠ADM=AD/MD=a/√[a^2+(a/2)^2]=2√5/5
cos∠BME=cos2∠ADM=2cos^2∠ADM-1=3/5
cos∠BME=MB/ME=a/2ME
ME=5a/6
则A'E=ME-MA'=5a/6-a/2=a/3
因为DA'=a
所以tan∠DEM =DA'/A'E=a/a/3=3
看了 如图(1),点M、N分别是正...的网友还看了以下:
若a,b,c属于a+b+c=1,求证:(1)1/a+1/b+1/c大于等于9(2)1/(a^2)+ 2020-04-07 …
已知a、b、c、d∈R,a方+b方=1,c方+d方=1,求证|ac已知a、b、c、d∈R,a方+b 2020-04-27 …
a、b、c是3个非0实数,且1/a+1/b+1/c=1/a+b+c,求证1/a^2001+1/b^ 2020-05-22 …
a+b+c=1,a、b、c∈R+,证明:[1/(1-a)]+[1/(1-b)]+[1/(1-c)] 2020-06-03 …
不等式误区a,b,c都为正,a+b+c=1求1/a^2+1/b^2+1/c^2的最小值帮我看一下我 2020-06-06 …
已知实数a,b,c,满足a+b+c=0,abc>0,且x=a/|a|+b/|b|+c/|c|,y= 2020-06-12 …
已知a,b,c是非零实数,且满足a2+b2+c2=1,a(1/b+1/c)+b(1/c+1/a)+ 2020-06-12 …
一道较难数学题已知a+b+c=abc求证a(1-2b)(1-2c)+b(1-2a)(1-2c)+c 2020-07-23 …
已知,1/a+1/b+1/c=1/a+b+c,求证1/a^1999+1/b^1999+1/c^19 2020-07-25 …
1.设a+(1/b)=1b+(1/c)=1b不等于1,c不等于1,求c+(1/a)2.设abc=1求 2020-10-31 …