早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中,AB垂直x轴于点B(-1,0).CD垂直x轴于点D(-3,0)直线AC与x轴、y轴分别交与点F、E,且解析式为y=kx+3.四边形ABDC的面积=4.(1)求直线AC的解析式.(2)试探索在x轴正半轴上
题目详情
如图,在平面直角坐标系中,AB垂直x轴于点B(-1,0).CD垂直x轴于点D(-3,0)
直线AC与x轴、y轴分别交与点F、E,且解析式为y=kx+3.四边形ABDC的面积=4.
(1)求直线AC的解析式.
(2)试探索在x轴正半轴上存在几个点P,是三角形EPF为等腰三角形,并求出这些点的坐标.

直线AC与x轴、y轴分别交与点F、E,且解析式为y=kx+3.四边形ABDC的面积=4.
(1)求直线AC的解析式.
(2)试探索在x轴正半轴上存在几个点P,是三角形EPF为等腰三角形,并求出这些点的坐标.

▼优质解答
答案和解析
(1)因为AB⊥x轴,CD⊥x轴,所以A、B两点横坐标相等,C、D两点横坐标相等,又因为直线AC的解析式为y=kx+3,所以可得A、C两点坐标分别为:
A(-1,-k+3),
C(-3,-3k+3)
则|AB|=|-k+3|,
|CD|=|-3k+3|,
又因为|BD|=2,四边形ABDC(直角梯形)的面积=4,则有:
(|-k+3|+|-3k+3|)×|BD|/2=4,
当k3时,分别去绝对值对k进行求解,有:
k=1/2或k=2;
所以AC的解析式为:
y=x/2+3
或者
y=2x+3
(2)
分析:由题目已知,EF是三角形的一条边,若构成等腰三角形,则EF可能是底边或腰,但是,如果EF为底边,P点势必落在x的负半轴上,与题意不符,因此,EF只能是三角形的一条腰,所以又分为∠FEP为一个底角和∠FEP为顶角两种情况,即满足条件的P点有两个.
①∠FEP为一个底角时:
当直线CA的方程为y=x/2+3时,可知E点坐标为(0,3),F点坐标为(-6,0),且|FE|=3√5,又因为|FP|=|FE|,所以点P的坐标为(3√5-6,0);
当直线CA的方程为y=2x+3时,可知E点坐标为(0,3),F点坐标为(-3/2,0),且|FE|=(3√5)/2,又因为|FP|=|FE|,所以点P的坐标为((3√5-3)/2,0);
②∠FEP为顶角时:
因为|EF|=|EP|,所以|OF|=|OP|,所以P点与F点关于y轴对称,有:
当直线CA的方程为y=x/2+3时,P点坐标为(6,0);
当直线CA的方程为y=2x+3时,P点坐标为(3/2,0).
A(-1,-k+3),
C(-3,-3k+3)
则|AB|=|-k+3|,
|CD|=|-3k+3|,
又因为|BD|=2,四边形ABDC(直角梯形)的面积=4,则有:
(|-k+3|+|-3k+3|)×|BD|/2=4,
当k3时,分别去绝对值对k进行求解,有:
k=1/2或k=2;
所以AC的解析式为:
y=x/2+3
或者
y=2x+3
(2)
分析:由题目已知,EF是三角形的一条边,若构成等腰三角形,则EF可能是底边或腰,但是,如果EF为底边,P点势必落在x的负半轴上,与题意不符,因此,EF只能是三角形的一条腰,所以又分为∠FEP为一个底角和∠FEP为顶角两种情况,即满足条件的P点有两个.
①∠FEP为一个底角时:
当直线CA的方程为y=x/2+3时,可知E点坐标为(0,3),F点坐标为(-6,0),且|FE|=3√5,又因为|FP|=|FE|,所以点P的坐标为(3√5-6,0);
当直线CA的方程为y=2x+3时,可知E点坐标为(0,3),F点坐标为(-3/2,0),且|FE|=(3√5)/2,又因为|FP|=|FE|,所以点P的坐标为((3√5-3)/2,0);
②∠FEP为顶角时:
因为|EF|=|EP|,所以|OF|=|OP|,所以P点与F点关于y轴对称,有:
当直线CA的方程为y=x/2+3时,P点坐标为(6,0);
当直线CA的方程为y=2x+3时,P点坐标为(3/2,0).
看了 如图,在平面直角坐标系中,A...的网友还看了以下:
函数f(x)满足:f(x+2)=-f(x)(x属于R),则下列结论正确的是A.f(x)的图像关于直 2020-05-22 …
若函数y=f(x+1)是偶函数,则下列说法不正确的是()A.y=f(x)图象关于直线x=1对称B. 2020-05-22 …
(1)定义在实数上的函数f(x)满足f(π/3+x)=-f(x)及f(-x)=f(x),则f(x) 2020-06-03 …
若f(x)的导数连续,下列正确的是()A.∫df(x)=f(x)B.∫f,(x)dx=f(x)C. 2020-07-01 …
设f(x)是定义在(0,正无穷)上的单调函数,一直对于任意正数x,都有f(f(x)+1/x)=1/ 2020-07-22 …
已知f(x)=e^x^2,f(d(x))=1-x,且d(x)>=0,则d(x)= 2020-07-26 …
设D是一有界闭域,函数f(x,y)在D上连续,在D内偏导数存在,且满足等式?f(x,y)?x+2? 2020-07-31 …
1.曲线y=f(x)关于直线y=x对称的必要条件是()A.f(x)=xB.f(x)=1/xC.f(x 2020-11-01 …
给这几个命题的证明,1.若f(x+a)=f(b-x),对于x∈R恒成立,则y=f(x)的图象关于直线 2020-11-11 …
已知偶函数y=f(x)在区间[-1,0]上是增函数,且满足f(1-x)+f(1+x)=0,下列判断中 2020-12-24 …