早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知曲线C:x2+y2+2kx+(4k+10)y+10k+20=0,其中常数k≠-1;(1)求证:对任意的k,曲线C是圆,并且圆心在同一条直线上;(2)证明:曲线C过定点;(3)若曲线C与x轴相切,求k的值.

题目详情
已知曲线C:x2+y2+2kx+(4k+10)y+10k+20=0,其中常数k≠-1;
(1)求证:对任意的k,曲线C是圆,并且圆心在同一条直线上;
(2)证明:曲线C过定点;
(3)若曲线C与x轴相切,求k的值.
▼优质解答
答案和解析
(1)曲线分成化简得:(x+k)2+(y+2k+5)2=5(k+1)2
∵k≠-1,∴r2=5(k+1)2>0,故曲线C都是圆,
∴圆心(-k,-2k-5),设x=-k,y=-2k-5,
∴y=2x-5,
则圆心在同一直线y=2x-5上;
(2)将x2+y2+2kx+(4k+10)y+10k+20=0整理为:
k(2x+4y+10)+(x2+y2+10y+20)=0,
2x+4y+10=0
x2+y2+10y+20=0

解得:
x=1
y=−3

曲线C过定点(1,-3);
(3)∵曲线C与x轴相切,
|2k+5|=
5
|k+1|,
解得:k=5±3
5

则曲线C与x轴相切时k=5±3
5