早教吧作业答案频道 -->数学-->
已知,如图,在△ABCD中,AB=AC,EF是△ABC的中位线,延长AB到D,使BD=AB,连接CD.求证:已知,如图,在△ABCD中,AB=AC,EF是△ABC的中位线,延长AB到D,使BD=AB,连接CD.求证:CE=2分之1CD(在线等,明天要交,\(≥▽≤)/~
题目详情
已知,如图,在△ABCD中,AB=AC,EF是△ABC的中位线,延长AB到D,使BD=AB,连接CD.求证:
已知,如图,在△ABCD中,AB=AC,EF是△ABC的中位线,延长AB到D,使BD=AB,连接CD.求证:CE=2分之1CD(在线等,明天要交,\(≥▽≤)/~
已知,如图,在△ABCD中,AB=AC,EF是△ABC的中位线,延长AB到D,使BD=AB,连接CD.求证:CE=2分之1CD(在线等,明天要交,\(≥▽≤)/~
▼优质解答
答案和解析
证明:连接CE
∵EF是△ABC的中位线
∴EF‖BC且EF=1/2BC,AE=BE,AF=CF
又,∵AB=AC,AB=DB
∴FC=FA=1/2BD AE=AF
∴∠AEF=∠AFE
∴∠BEF=∠CFE
∵EF‖BC
∴∠DBC=∠CFE
综上,DB=2CF,∠DBC=∠CFE,BC=2FE
∴△DBC∽CFE△,两个三角形三边之比为2:1
因此,CE=1/2CD
思路:根据相似三角形,两三角形三边之比皆成比例,边角边来证明.其实不太难.
∵EF是△ABC的中位线
∴EF‖BC且EF=1/2BC,AE=BE,AF=CF
又,∵AB=AC,AB=DB
∴FC=FA=1/2BD AE=AF
∴∠AEF=∠AFE
∴∠BEF=∠CFE
∵EF‖BC
∴∠DBC=∠CFE
综上,DB=2CF,∠DBC=∠CFE,BC=2FE
∴△DBC∽CFE△,两个三角形三边之比为2:1
因此,CE=1/2CD
思路:根据相似三角形,两三角形三边之比皆成比例,边角边来证明.其实不太难.
看了 已知,如图,在△ABCD中,...的网友还看了以下:
A、B、C、D、E、F六种元素,其中ABCDE为短周期元素,①原子半径A<C<B<E<D②原子最外 2020-05-13 …
设X,Y是两个随机变量,则下列等式中正确的是A,E(X+Y)=E(X)+E(Y)B,D(X+Y)= 2020-05-15 …
若a/b=c/d=e/f,则下列各式中正确的是().A.e/f=ac/bdB.e/f=(a+c+e 2020-06-06 …
A、B、C、D、E、F六个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小 2020-06-22 …
A、B、C、D、E、F六个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小 2020-07-01 …
A、B、C、D、E五种物质都含有同一种活泼金属元素,它们按图所示关系相互转化,已知A为单质.(1) 2020-07-15 …
一个9位数abcdefghi满足:1.a+b+...+h+i=cd2.a(b+d-c)=243.( 2020-07-19 …
一个9位数abcdefghi满足:1.a+b+...+h+i=cd2.a(b+d-c)=243.(e 2020-11-19 …
A,B,C,D,E,F六个足球队进行单循环赛,当比赛进行到某一天时,统计出A,B,C,D,E五队已分 2021-01-09 …
A,B,C,D,E,F六个足球队进行单循环赛,当比赛进行到某一天时,统计出A,B,C,D,E五队已分 2021-01-09 …