早教吧作业答案频道 -->其他-->
设y=f(x)为三次函数,且图象关于原点对称,当x=12时,f(x)的极小值为-1.(Ⅰ)求f(x)的解析式;(Ⅱ)证明:当x∈(1,+∞)时,函数f(x)图象上任意两点的连线的斜率恒大于0.
题目详情
设y=f(x)为三次函数,且图象关于原点对称,当x=
时,f(x)的极小值为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)证明:当x∈(1,+∞)时,函数f(x)图象上任意两点的连线的斜率恒大于0.
| 1 |
| 2 |
(Ⅰ)求f(x)的解析式;
(Ⅱ)证明:当x∈(1,+∞)时,函数f(x)图象上任意两点的连线的斜率恒大于0.
▼优质解答
答案和解析
(Ⅰ)设f(x)=ax3+bx2+cx+d(a≠0)
∵其图象关于原点对称,即f(-x)=-f(x)
得-ax3+bx2-cx+d=-ax3-bx2-cx-d
∴b=d=0,
则有f(x)=ax3+cx
由f′(x)=3ax2+c,依题意得f′(
)=0
∴
a+c=0①
f(
)=
a+
c=−1②(5分)
由①②得a=4,c=-3故所求的解析式为:f(x)=4x3-3x.(6分)
(Ⅱ)由f′(x)=12x2-3>0
解得:x>
或x<−
(8分)
∵(1,+∞)⊂(
,+∞)
∴x∈(1,+∞)时,函数f(x)单调递增;(10分)
设(x1,y1),(x2,y2)是x∈(1,+∞)时,
函数f(x)图象上任意两点,
且x2>x1,则有y2>y1
∴过这两点的直线的斜率k=
>0.(12分)
∵其图象关于原点对称,即f(-x)=-f(x)
得-ax3+bx2-cx+d=-ax3-bx2-cx-d
∴b=d=0,
则有f(x)=ax3+cx
由f′(x)=3ax2+c,依题意得f′(
| 1 |
| 2 |
∴
| 3 |
| 4 |
f(
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 2 |
由①②得a=4,c=-3故所求的解析式为:f(x)=4x3-3x.(6分)
(Ⅱ)由f′(x)=12x2-3>0
解得:x>
| 1 |
| 2 |
| 1 |
| 2 |
∵(1,+∞)⊂(
| 1 |
| 2 |
∴x∈(1,+∞)时,函数f(x)单调递增;(10分)
设(x1,y1),(x2,y2)是x∈(1,+∞)时,
函数f(x)图象上任意两点,
且x2>x1,则有y2>y1
∴过这两点的直线的斜率k=
| y2−y1 |
| x2−x1 |
看了设y=f(x)为三次函数,且图...的网友还看了以下:
若二次函数自变量为0时,函数值为1,自变量为-1和2时,函数值为0,则这个二次函数的解析式为? 2020-03-30 …
理想函数问题对于定义域为[0,1]的函数f(x),如果同时满足一下三条:1.对任意的x∈[0,1] 2020-06-07 …
对于定义域为[0,1]的函数f(x),如果同时满足一下三条:1.对任意的x∈[0,1],总有f(x 2020-06-07 …
试构造函数f(x),g(x),其定义域为(0,1),值域为[0,1]并满足如下条件:试构造函数f( 2020-07-26 …
构造函数f﹙x﹚、g﹙x﹚,其定义域为﹙0,1﹚,值域为[0,1].﹙1﹚对于任意a∈[0,1], 2020-07-26 …
如何证明单峰函数?设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0 2020-07-30 …
已知函数y=fx的定义域为0.1求函数gx=f(x+a)+f(x-a){a>o}的定义域答案如下0 2020-08-01 …
已知函数f(x)的定义域为[0,1],则f(x-2)的定义域为∵函数f(x)的定义域为[0,1],∴ 2020-11-18 …
紧急!抽象函数及其定义域的求法,已知函数f(x)的定义域为[0,1],求f(x²+1)的定义域这里为 2021-01-31 …
函数定义域(1)已知函数f(x-1)的定义域是[-1,1],求函数y=f(x)和y=(x2+1)(2 2021-01-31 …