早教吧作业答案频道 -->其他-->
设y=f(x)为三次函数,且图象关于原点对称,当x=12时,f(x)的极小值为-1.(Ⅰ)求f(x)的解析式;(Ⅱ)证明:当x∈(1,+∞)时,函数f(x)图象上任意两点的连线的斜率恒大于0.
题目详情
设y=f(x)为三次函数,且图象关于原点对称,当x=
时,f(x)的极小值为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)证明:当x∈(1,+∞)时,函数f(x)图象上任意两点的连线的斜率恒大于0.
| 1 |
| 2 |
(Ⅰ)求f(x)的解析式;
(Ⅱ)证明:当x∈(1,+∞)时,函数f(x)图象上任意两点的连线的斜率恒大于0.
▼优质解答
答案和解析
(Ⅰ)设f(x)=ax3+bx2+cx+d(a≠0)
∵其图象关于原点对称,即f(-x)=-f(x)
得-ax3+bx2-cx+d=-ax3-bx2-cx-d
∴b=d=0,
则有f(x)=ax3+cx
由f′(x)=3ax2+c,依题意得f′(
)=0
∴
a+c=0①
f(
)=
a+
c=−1②(5分)
由①②得a=4,c=-3故所求的解析式为:f(x)=4x3-3x.(6分)
(Ⅱ)由f′(x)=12x2-3>0
解得:x>
或x<−
(8分)
∵(1,+∞)⊂(
,+∞)
∴x∈(1,+∞)时,函数f(x)单调递增;(10分)
设(x1,y1),(x2,y2)是x∈(1,+∞)时,
函数f(x)图象上任意两点,
且x2>x1,则有y2>y1
∴过这两点的直线的斜率k=
>0.(12分)
∵其图象关于原点对称,即f(-x)=-f(x)
得-ax3+bx2-cx+d=-ax3-bx2-cx-d
∴b=d=0,
则有f(x)=ax3+cx
由f′(x)=3ax2+c,依题意得f′(
| 1 |
| 2 |
∴
| 3 |
| 4 |
f(
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 2 |
由①②得a=4,c=-3故所求的解析式为:f(x)=4x3-3x.(6分)
(Ⅱ)由f′(x)=12x2-3>0
解得:x>
| 1 |
| 2 |
| 1 |
| 2 |
∵(1,+∞)⊂(
| 1 |
| 2 |
∴x∈(1,+∞)时,函数f(x)单调递增;(10分)
设(x1,y1),(x2,y2)是x∈(1,+∞)时,
函数f(x)图象上任意两点,
且x2>x1,则有y2>y1
∴过这两点的直线的斜率k=
| y2−y1 |
| x2−x1 |
看了设y=f(x)为三次函数,且图...的网友还看了以下:
已知f(x)是定义在R上的奇函数,f(x+2)=-f(x).且当0≤x≤1时,f(x)=(x)1. 2020-05-21 …
一个数学分析题.设f(x)连续,当x→+∞时,limf(x+1)-f(x)=k(常数).证明:当x 2020-06-03 …
一道高一数学周期函数题已知f(x)是以2为周期的奇函数,已知f(x)是以2为周期的奇函数,当x∈[ 2020-06-06 …
已知函数f(x)是(负无穷,正无穷)上的奇函数,且f(x)的图像关于x=1对称,当x属于[0,1] 2020-06-09 …
函数f(X)=[X]的函数值表示不超过X的最大整数疑惑!函数f(x)=[x]的函数值表示不超过x的 2020-06-27 …
已知f(x)是定义在R上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1) 2020-07-15 …
已知f(x)是定义在R上的偶函数,且f(x+4)=f(x)(x∈R)若当0≤x≤2时f(x)=x求 2020-08-01 …
设f(x)是定义在R上的函数,且对任意实数有f(x+2)=-f(x),当x∈[0,2]时,f(x) 2020-08-02 …
已知函数f(x)的定义域为R,且满足①f(-x)=-f(x)②f(x+2)=f(x),又当x∈[0, 2020-12-03 …
函数的解析式设函数y=f(x)对任意x属于R,都有f(x+1)=af(x)(x>0).若当x属于(0 2020-12-05 …