早教吧作业答案频道 -->其他-->
下列说法正确的有(1)直线与平面所成的角α的范围是[0°,90°](2)函数f(x)在区间(a,b)上连续可导,则f′(x)>0是函数f(x)在区间(a,b)上为增函数充要条件(3)已知F1,F
题目详情
下列说法正确的有______
(1)直线与平面所成的角α的范围是[0°,90°]
(2)函数f(x)在区间(a,b)上连续可导,则f′(x)>0是函数f(x)在区间(a,b)上为增函数充要条件
(3)已知F1,F2为两定点,|F1F2|=6动点P满足|PF1|-|PF2|=4则动点P的轨迹为双曲线的一支
(4)函数f(x)=x3-12x+24的单调增区间为:(-∞,-2)∪(2,+∞)
(1)直线与平面所成的角α的范围是[0°,90°]
(2)函数f(x)在区间(a,b)上连续可导,则f′(x)>0是函数f(x)在区间(a,b)上为增函数充要条件
(3)已知F1,F2为两定点,|F1F2|=6动点P满足|PF1|-|PF2|=4则动点P的轨迹为双曲线的一支
(4)函数f(x)=x3-12x+24的单调增区间为:(-∞,-2)∪(2,+∞)
▼优质解答
答案和解析
(1)由直线与平面所成的角的概念及范围知,直线与平面所成的角α的范围是[0°,90°],正确;
(2)函数f(x)在区间(a,b)上连续可导,则f′(x)>0⇒函数f(x)在区间(a,b)上为增函数,充分性成立;反之,若函数f(x)在区间(a,b)上为增函数⇒f′(x)≥0,如f(x)=x3为R上的增函数,但f′(x)=3x2≥0,故(2)错误;
(3)由双曲线的定义知,动点P满足|PF1|-|PF2|=4<6=|F1F2|,则动点P的轨迹为双曲线的一支,正确;
(4)∵f(x)=x3-12x+24,
∴f′(x))=3x2-12=3(x+2(x-2)),
当x>2或x<-2时,f′(x)>0,
∴函数f(x)=x3-12x+24的单调增区间为:(-∞,-2),(2,+∞),故(4)错误;
综上所述,正确命题的序号为:(1)(3),
故答案为:(1)(3).
(2)函数f(x)在区间(a,b)上连续可导,则f′(x)>0⇒函数f(x)在区间(a,b)上为增函数,充分性成立;反之,若函数f(x)在区间(a,b)上为增函数⇒f′(x)≥0,如f(x)=x3为R上的增函数,但f′(x)=3x2≥0,故(2)错误;
(3)由双曲线的定义知,动点P满足|PF1|-|PF2|=4<6=|F1F2|,则动点P的轨迹为双曲线的一支,正确;
(4)∵f(x)=x3-12x+24,
∴f′(x))=3x2-12=3(x+2(x-2)),
当x>2或x<-2时,f′(x)>0,
∴函数f(x)=x3-12x+24的单调增区间为:(-∞,-2),(2,+∞),故(4)错误;
综上所述,正确命题的序号为:(1)(3),
故答案为:(1)(3).
看了下列说法正确的有(1)直线与平...的网友还看了以下:
求证几个函数对称定理!50待加.1.函数f(x)定义域为R.求证y=f(x-m)与y=f(m-x) 2020-06-06 …
一道关于函数周期的题若函数f(x)在R上为奇函数,且在(-1,0)上为增函数,且f(x+2)=-f 2020-06-07 …
已知函数f(x)=2/x+alnx-2(1)若函数y=f(x)在点P(1,f(1))处的切线与直线 2020-06-08 …
请问大家有这两种情况的图示吗?①函数x=f(y)的图像由函数y=f(x)的图像关于直线y=x对称变 2020-06-13 …
函数y=f(x)对定义域内的任意X都有f(a+x)=f(a-x),则y=f(x)的图像关于直线x= 2020-06-25 …
请问两个函数合在一起可以直接求原函数吗?例如:已知f(x)g(x)及他们的原函数,导函数或N次原函 2020-07-23 …
已知函数f(x)=lnx,(1)若直线y=kx+1与函数f(x)的图象相切,求实数k的值;(2)若 2020-07-31 …
函数对称性问题f(a+x)=f(a-x)是说明这个函数f(x)关于直线x=a对称,而函数y=f(a 2020-08-01 …
(1)若函数f(X)满足f(x+a)=f(x-a),则f(x)为周期函数,丨2a丨为它的一个周期(1 2020-11-06 …
给这几个命题的证明,1.若f(x+a)=f(b-x),对于x∈R恒成立,则y=f(x)的图象关于直线 2020-11-11 …