早教吧作业答案频道 -->数学-->
如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°,△EDF绕着边AB的中点D旋转,DE,DF分别交线段AC于点M,K。(1)观察:①如图2、图3,当∠CDF=0°或60°时,AM+CKMK(填“>”,“<”
题目详情
如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°,△EDF绕着边AB的中点D旋转,DE,DF分别交线段AC于点M,K。 (1)观察: ①如图2、图3,当∠CDF=0°或60°时,AM+CK_______MK(填“>”,“<”或“=”); ②如图4,当∠CDF=30° 时,AM+CK___MK(只填“>”或“<”); (2)猜想:如图1,当0°<∠CDF<60°时,AM+CK____MK,证明你所得到的结论; (3)如果MK 2 +CK 2 =AM 2 ,请直接写出∠CDF的度数和 ![]() |
![]() ![]() |
▼优质解答
答案和解析
(1)①在Rt△ABC中,D是AB的中点, ∴AD=BD=CD= ![]() 又∵∠A=30°, ∴∠ACD=60°﹣30°=30°, 又∵∠CDE=60°,或∠CDF=60°时, ∴∠CKD=90°, ∴在△CDA中,AM(K)=CM(K), 即AM(K)=KM(C)(等腰三角形底边上的垂线与中线重合), ∵CK=0,或AM=0, ∴AM+CK=MK; ②由①,得∠ACD=30°,∠CDB=60°, 又∵∠A=30°,∠CDF=30,∠EDF=60°, ∴∠ADM=30°, ∴AM=MD,CK=KD, ∴AM+CK=MD+KD, ∴在△MKD中,AM+CK>MK(两边之和大于第三边); (2)> 证明:作点C关于FD的对称点G, 连接GK,GM,GD,则CD=GD,GK=CK,∠GDK=∠CDK, ∵D是AB的中点, ∴AD=CD=GD、 ∵∠A=30°, ∴∠CDA=120°, ∵∠EDF=60°, ∴∠GDM+∠GDK=60°,∠ADM+∠CDK=60°. ∴∠ADM=∠GDM, ∵DM=DM, ∴ ![]() ∴△ADM≌△GDM,(SAS) ∴GM=AM ∵GM+GK>MK, ∴AM+CK>MK; (3)由(2),得GM=AM,GK=CK, ∵MK 2 +CK 2 =AM 2 , ∴MK 2 +GK 2 =GM 2 , ∴∠GKM=90°, 又∵点C关于FD的对称点G, ∴∠CKG=90°,∠FKC= ![]() 又有(1),得∠A=∠ACD=30°, ∴∠FKC=∠CDF+∠ACD, ∴∠CDF=∠FKC﹣∠ACD=15°, 在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°, ∴∠GMK=30°, ∴ ![]() ![]() ∴ ![]() ![]() | ![]() |
看了如图1,Rt△ABC≌Rt△E...的网友还看了以下:
曲线C由X2/9+y2/5=1(y≥0)和x2/9-y2/5=1(y≥0)两部分组成,若过点(0, 2020-05-15 …
1.抛物线与x轴的两个交点间的距离是3.且过点(0,-2),(2,0)求解析式2.已知抛物线过(( 2020-05-15 …
)已知二次函数Y=ax2+bx+c的图像与X轴交于(x1,0),(x2,0)两点,且0<x1<1, 2020-05-16 …
(1)若直线l过点(0,2),且与圆(2+x)2+(y-1)2=4相切,求直线l的方程;(2)设圆 2020-05-22 …
已知(X,Y)的联合概率函数如下表,试证E(XY)=0X\Y|-101——|——————-1|a0 2020-06-12 …
大学概率论问题,下面这个公式是怎么推导出来的?当X,Y相互独立时,E[(X-E(X))(Y-E(Y 2020-07-25 …
求过点(2,4),且在两坐标轴上的截距之和为0的直线的方程答案是x-y+2=0或2x-y=0可是我 2020-07-30 …
已知椭圆C中心为坐标原点O一长轴端点(0,2)已知椭圆C的中心为坐标原点,一个长轴端点为(0,2) 2020-07-30 …
如图所示,当地球上昼半球与东半球重合时,回答下题。(1)此时太阳直射点的经纬度是[]A.70°E,0 2020-11-10 …
曲线y=e的-2x次+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积是什么曲线y=e 2021-02-07 …