早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在圆中MN为直径,A为圆上定一点,角AMN为30°,点B为弧AN的中点,直径MN上有一动点P,求AP+BP的最小值?

题目详情
在圆中MN为直径,A为圆上定一点,角AMN为30°,点B为弧AN的中点,直径MN上有一动点P,求AP+BP的最小值?
▼优质解答
答案和解析
设d为圆的直径,圆心为O,点A关于直线MN的对称点为A',连接MA',NA',设弧A'N的中点为B',连接PB',由对称性,得:AP+BP=AP+B'P,当且仅当A,P,B'三点共线时AP+BP=AP+BP'取得最小值; 易得角B'MN=15度,所以角AMB'=45度,连接AO并延长交圆周于C,则角MAC=30度=角MB'C,因为角AB'C=90度,所以角MB'A=60度,做AD垂直于MB',垂足为D,由三角函数得AB'=(根号2/2)d
所以AP+BP的最小值为(根号2/2)d.