早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设直角三角形两直角边的长分别为a和b,斜边长为c,斜边上的高为h,则a4+b4和c4+h4的大小关系是()A.a4+b4<c4+h4B.a4+b4>c4+h4C.a4+b4=c4+h4D.不能确定

题目详情
设直角三角形两直角边的长分别为a和b,斜边长为c,斜边上的高为h,则a4+b4和c4+h4的大小关系是(  )

A.a4+b4<c4+h4
B.a4+b4>c4+h4
C.a4+b4=c4+h4
D.不能确定
▼优质解答
答案和解析
由三角形的面积计算公式可得:
1
2
ab=
1
2
ch,即ab=ch,
由勾股定理可得a2+b2=c2
∴a4+b4-(c4+h4)=(a2+b22-(c2+h22=c4-(c4+2c2h2+h4)=-(h4+2c2h2)<0.
∴a4+b4<c4+h4
故选A.