早教吧作业答案频道 -->数学-->
数学思考题初二啊1.已知a+b+c=0,a^2+b^2+c^2=4求a^4+b^4+c^4(注:^2表示平方^4表示4次方)2.n为自然数,证明n^4+4={(n-1)^2+1}×{(n+1)^2+1}3.设a、b、c、d都是整数,且m=a^2+
题目详情
数学思考题 初二啊
1.已知 a+b+c=0,a^2 + b^2 + c^2 =4
求a^4 + b^4 + c^4
(注: ^2 表示 平方 ^4表示 4次方)
2.n为自然数,证明 n^4 +4 ={(n-1)^2 +1}×{(n+1)^2 +1}
3.设 a、b、c、d 都是整数,且 m=a^2 + b^2,n=c^2 + d^2
请将 mn 表示成这两个整数的平方和 的形式.
1.已知 a+b+c=0,a^2 + b^2 + c^2 =4
求a^4 + b^4 + c^4
(注: ^2 表示 平方 ^4表示 4次方)
2.n为自然数,证明 n^4 +4 ={(n-1)^2 +1}×{(n+1)^2 +1}
3.设 a、b、c、d 都是整数,且 m=a^2 + b^2,n=c^2 + d^2
请将 mn 表示成这两个整数的平方和 的形式.
▼优质解答
答案和解析
只要你时刻想着“这是初二的题(好在不是高二的,或是大二的)”,你就会发现这是很简单的了
1.a+b+c=0,则(a+b+c)^2=0,a^2+b^2+c^2+2(ab+bc+ca)=0,4+2(ab+bc+ca)=0,ab+bc+ca=-2
则(ab+bc+ca)^2=4,(ab)^2+(bc)^2+(ca)^2+2abc(a+b+c)=4,(ab)^2+(bc)^2+(ca)^2+0=4
又(a^2 + b^2 + c^2 ) =4^2
即a^4+b^4+c^4+2[(ab)^2+(bc)^2+(ca)^2]=16
得a^4+b^4+c^4=8
(此外,如果是小题,还可以用代特殊值的方法:由条件可得一组解,a=0,b=√2,c=-√2,则a^4+b^4+c^4=0+4+4=8)
2.这道题真的没什么可说的,把等号右边展开就行了,只不过注意一些技巧罢了
[(n-1)^2 +1]×[(n+1)^2 +1]
=(n^2-2n+1+1)(n^+2n+1+1)
=[(n^2+2)-2n][(n^2+2)+2n]
=(n^2+2)^2-(2n)^2
=n^4+4n^2+4-4n^2
=n^4+4
3.mn=(a^2+b^2)(c^2+d^2)
=(ac)^2+(ad)^2+(bc)^2+(bd)^2
=(ac)^2+(bd)^2+2abcd+(ad)^2+(bc)^2-2abcd
=(ac+bd)^2+(ad-bc)^2
(介题,我起初都没看懂是什么.什么叫“这两个整数的平方和”?“这两个整数”是哪两个整数?我想是表示成某两个整数的平方和吧)
1.a+b+c=0,则(a+b+c)^2=0,a^2+b^2+c^2+2(ab+bc+ca)=0,4+2(ab+bc+ca)=0,ab+bc+ca=-2
则(ab+bc+ca)^2=4,(ab)^2+(bc)^2+(ca)^2+2abc(a+b+c)=4,(ab)^2+(bc)^2+(ca)^2+0=4
又(a^2 + b^2 + c^2 ) =4^2
即a^4+b^4+c^4+2[(ab)^2+(bc)^2+(ca)^2]=16
得a^4+b^4+c^4=8
(此外,如果是小题,还可以用代特殊值的方法:由条件可得一组解,a=0,b=√2,c=-√2,则a^4+b^4+c^4=0+4+4=8)
2.这道题真的没什么可说的,把等号右边展开就行了,只不过注意一些技巧罢了
[(n-1)^2 +1]×[(n+1)^2 +1]
=(n^2-2n+1+1)(n^+2n+1+1)
=[(n^2+2)-2n][(n^2+2)+2n]
=(n^2+2)^2-(2n)^2
=n^4+4n^2+4-4n^2
=n^4+4
3.mn=(a^2+b^2)(c^2+d^2)
=(ac)^2+(ad)^2+(bc)^2+(bd)^2
=(ac)^2+(bd)^2+2abcd+(ad)^2+(bc)^2-2abcd
=(ac+bd)^2+(ad-bc)^2
(介题,我起初都没看懂是什么.什么叫“这两个整数的平方和”?“这两个整数”是哪两个整数?我想是表示成某两个整数的平方和吧)
看了数学思考题初二啊1.已知a+b...的网友还看了以下:
这是一道定义新运算的题对于正整数a和b,规定a☆b=a×(a+1)×(a+2)×.×(a+b-1) 2020-05-13 …
集合A={b,3,a} B={1.a²-a+1} 且B为A的子集,求A的值.速求答案啊~~~~~~ 2020-05-15 …
已知集合A{0,1,2}若集合B={x\x∈A}C={x\x包含于A}用列举法表示集合B和C 2020-05-16 …
关于高一数学集合间的基本关系问题!1.写出集合{a,b,c}的所有子集是否是空集、{a}{b}{c 2020-05-16 …
包含关系和属于关系的问题包含关系{a}含于A和属于关系a∈A有何区别?由于集合{a}就只有一个元素 2020-06-11 …
集合A={x|x^2-ax+a^2-19=0},B={x|x^2-5x+6=0}C={x|x^2+ 2020-07-29 …
关于一些集合的题~一.用列举法表示集合1.A={x∈N|6/6-x∈N}2.B={6/6-x∈N| 2020-08-01 …
由大于10小于20的所有整数的组成集合.用描述法是:{x∈Z|10<x<20}但我可不可以表示成: 2020-08-01 …
若点集A={(x,y)|x^2+y^2≤1},B={(x,y)|-1≤x≤1,-1≤y≤1},(1) 2020-10-31 …
怎么用集合表示“正偶数构成的集合”{x属于N+丨x=2n,n∈N}和{x∈N+丨x=2n}表示正偶数 2020-11-01 …