早教吧作业答案频道 -->数学-->
已知椭圆C:x2/a2+y2/b2=1(a>b>o)经过点A(2,1),离心率为√2/2,过点B(3,0)的直线l与椭圆C交于不同的两点M,N(1)求椭圆C的方程(2)求BM的拔乘以BN的拔的取值范围(3)设直线AM和AN的斜率分别是kAB和KAN
题目详情
已知椭圆C:x2/a2+y2/b2=1(a>b>o)经过点A(2,1),离心率为√2/2,过点B(3,0)的直线l与椭圆C交于不同的两点M,N
(1)求椭圆C的方程
(2)求BM的拔乘以BN的拔的取值范围
(3)设直线AM和AN的斜率分别是kAB和KAN,求证KAM+kAN为定值
(1)求椭圆C的方程
(2)求BM的拔乘以BN的拔的取值范围
(3)设直线AM和AN的斜率分别是kAB和KAN,求证KAM+kAN为定值
▼优质解答
答案和解析
离心率为√2/2即a^2=2c^2;所以:b^2=a^2-c^2=2c^2-C^2=C^2
椭圆C:x2/a2+y2/b2=1(a>b>o)经过点A(2,1),那么4/2c^2+1/c^2=1;解得:c^2=3
所以:a^2=6,b^2=3椭圆为:x^2/6+y^2/3=1
(2)设M(x1,y1),N(x2,y2);因为点B(3,0在椭圆外,所以直线l的斜率一定存在;
设直线l 的方程为:y=k(x-3)代入椭圆方程中得:(1+2k^2)x^2-12k^2x+18k^2-6=0
由判别式>0得:-1
椭圆C:x2/a2+y2/b2=1(a>b>o)经过点A(2,1),那么4/2c^2+1/c^2=1;解得:c^2=3
所以:a^2=6,b^2=3椭圆为:x^2/6+y^2/3=1
(2)设M(x1,y1),N(x2,y2);因为点B(3,0在椭圆外,所以直线l的斜率一定存在;
设直线l 的方程为:y=k(x-3)代入椭圆方程中得:(1+2k^2)x^2-12k^2x+18k^2-6=0
由判别式>0得:-1
看了 已知椭圆C:x2/a2+y2...的网友还看了以下:
问几道整式的乘法的题1(2a+3)(3a-2)2(3x-5y)(2x+3y)3(3/2a+8/3) 2020-05-19 …
某同学有同样画册2本,同样的集邮册3本,从中取出4本送给4位同学,每人一本,共有几种不同的赠送方法 2020-05-22 …
如图,已知椭圆C:x∧2/a∧2+y∧2/b∧2=1的离心率为√3/2,左焦点F(-c,0)到直线 2020-06-21 …
帮个忙解三条数学问题!1.a,b,c是2x^3+x^2-4x+1=0的根,求:(1)a^2+b^2 2020-06-24 …
求1+2+2^2+2^3+2^4+…+2^2014的值.设S=1+2+2^2+2^3+2^4+…+ 2020-07-09 …
1.设abcd是四个整数,且使m=(ab+cd)^2-1/4(a^2+b^2-c^2-d^2)^2 2020-07-09 …
C语言问题#includevoidmain(){inta=3,C语言问题#includevoidm 2020-07-23 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …
已知a,b,c>0,abc=1,求证:a^3+b^3+c^3≥ab+bc+ca由基本不等式:ab+ 2020-08-03 …
(7a^2+2b^2)^2-(2b^2+7b^2)^2(a^2+b^2+c^2)^2-4a^2b^2 2020-10-31 …