早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2010•宣武区二模)已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据,(Ⅰ)求这个组合体的体积;(Ⅱ)若组合体的底部几何体记为ABCD-A1B1C1D1,其中A1B1BA为

题目详情
(2010•宣武区二模)已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据,
(Ⅰ)求这个组合体的体积;
(Ⅱ)若组合体的底部几何体记为ABCD-A1B1C1D1,其中A1B1BA为正方形.
(i)求证:A1B⊥平面AB1C1D;
(ii)求证:P为棱A1B1上一点,求AP+PC1的最小值.
▼优质解答
答案和解析
(Ⅰ)此组合体底部为长方体,上部为半个圆柱V=8×8×10+
1
2
π×42×10=640+80π.(5分)
(Ⅱ)(i)∵长方体ABCD-A1B1C1D1
∴AD⊥平面A1B1BA
∵A1B⊂平面A1B1BA
∴AD⊥A1B
又∵A1B1BA是边长为8的正方形
∴A1B⊥AB1
∵AB1∩AD=A
∴A1B⊥平面AB1C1D.(10分)
(ii)将上底面A1B1C1D1展开,与平面A1B1BA共面时,连接C1A交A1B1于点P,即AC1为最短距离.
此时长度为
82+182
=2
97
.(13分)