早教吧作业答案频道 -->其他-->
微积分基本定理是怎样推导出来的?那个微积分基本定理:对于被积函数f(x),F'(x)=f(x),∫f(x)dx=F(b)-F(a)(积分上限为b,下限为a)这个定理是怎样推导出来的?我要全过程^-^[顺便说一下,本人正在读高二
题目详情
微积分基本定理是怎样推导出来的?
那个微积分基本定理:对于被积函数f(x),F'(x)=f(x),∫f(x)dx=F(b)-F(a)
(积分上限为b,下限为a)
这个定理是怎样推导出来的?我要全过程^-^
[顺便说一下,本人正在读高二,老师说这是高等数学的内容,说不要求掌握....]
那个微积分基本定理:对于被积函数f(x),F'(x)=f(x),∫f(x)dx=F(b)-F(a)
(积分上限为b,下限为a)
这个定理是怎样推导出来的?我要全过程^-^
[顺便说一下,本人正在读高二,老师说这是高等数学的内容,说不要求掌握....]
▼优质解答
答案和解析
这个定理的推导比较复杂,牵扯到积分上限函数:Φ(x) = ∫f(t)dt(上限为自变量x,下限为常数a)。以下用∫f(x)dx表示从a到b的定积分。
首先需要证明,若函数f(x)在[a,b]内可积分,则Φ(x)在此区间内为一连续函数。
证明:给x一任意增量Δx,当x+Δx在区间[a,b]内时,可以得到
Φ(x+Δx) = ∫f(t)dt = ∫f(t)dt + ∫f(t)dt
= Φ(x) + ∫f(t)dt
即
Φ(x+Δx) - Φ(x) = ∫f(t)dt
应用积分中值定理,可以得到
Φ(x+Δx) - Φ(x) = μΔx
其中m0,即
lim Φ(x+Δx) - Φ(x) = 0(当Δx->0)
因此Φ(x)为连续函数
其次要证明:如果函数f(t)在t=x处连续,则Φ(x)在此点有导数,为
Φ'(x) = f(x)
证明:由以上结论可以得到,对于任意的ε>0,总存在一个δ>0,使|Δx|
首先需要证明,若函数f(x)在[a,b]内可积分,则Φ(x)在此区间内为一连续函数。
证明:给x一任意增量Δx,当x+Δx在区间[a,b]内时,可以得到
Φ(x+Δx) = ∫f(t)dt = ∫f(t)dt + ∫f(t)dt
= Φ(x) + ∫f(t)dt
即
Φ(x+Δx) - Φ(x) = ∫f(t)dt
应用积分中值定理,可以得到
Φ(x+Δx) - Φ(x) = μΔx
其中m0,即
lim Φ(x+Δx) - Φ(x) = 0(当Δx->0)
因此Φ(x)为连续函数
其次要证明:如果函数f(t)在t=x处连续,则Φ(x)在此点有导数,为
Φ'(x) = f(x)
证明:由以上结论可以得到,对于任意的ε>0,总存在一个δ>0,使|Δx|
看了 微积分基本定理是怎样推导出来...的网友还看了以下:
c语言,用指针编程问题编写函数f,计算并返回半径为r的球体的表面积和体积.编写主函数,输入半径x, 2020-05-12 …
积善之家必有余庆,后面还有句解释大概是说为什么积善还没出现余庆之类的,是咋说的来着?有句话说积善之 2020-06-04 …
用定积分怎么算面积f(x)=x,∫[0,1]f(x)dx=?用图画出来就是一个等腰直角三角形,面积 2020-06-06 …
要高考了,问一下,f(a+x)=f(a-x)等价于f(2a-x)=f(x),可以推出T=2a和对称 2020-06-10 …
如图①,梯形ABCD中,∠C=90°.动点E、F同时从点B出发,点E沿折线BA-AD-DC运动到点 2020-06-12 …
关于反常积分的瑕点问题举例说:f(x)=1/x,求该函数在区间-1,1内的积分.答:可以明显看出为 2020-06-19 …
如图,平行四边形ABCD的面积是48cm2,CE=2DE,F是DG中点.①写出图中有哪儿对三角形的 2020-07-17 …
哪些常见的初等函数是不可积的?比如e^(-x^2)等等``````是说积不出的初等函数. 2020-08-02 …
请问:次数不超过3的所有实系数多项式全体在内积(f,g)=∫f(x)g(x)dx;(这是一个-1到 2020-08-03 …
书上说,设F是由一些数组成的集合,其中包含0和1.如果F中任意两个数(这两个数也可以相同)的和,差, 2020-12-09 …