早教吧作业答案频道 -->数学-->
设集合M={x|f(x)=x},集合{x|f(f(x))=x},若已知函数y=f(x)是R上的增函数,记|M|,|N|是M,N中元素的个数,则下列判断一定正确的是()A.|M|=|N|B.|M|>|N|C.|M|<|N|D.||M|-|N||=1
题目详情
设集合M={x|f(x)=x},集合{x|f(f(x))=x},若已知函数y=f(x)是R上的增函数,记|M|,|N|是M,N中元素的个数,则下列判断一定正确的是( )
A.|M|=|N|
B.|M|>|N|
C.|M|<|N|
D.||M|-|N||=1
A.|M|=|N|
B.|M|>|N|
C.|M|<|N|
D.||M|-|N||=1
▼优质解答
答案和解析
若x∈M,即f(x)=x,
从而f(f(x))=f(x)=x,
∴x∈N,
反之,若x∈N,即f(f(x))=x,
当f(x)=x时成立,若f(x)≠x,∵函数y=f(x)是R上的增函数,
从而f(f(x))≠f(x)=x,这与f(f(x))=x矛盾,
故必有:f(x)=x
∴x∈M,
综上所述:M=N,
∴|M|=|N|
故选A.
从而f(f(x))=f(x)=x,
∴x∈N,
反之,若x∈N,即f(f(x))=x,
当f(x)=x时成立,若f(x)≠x,∵函数y=f(x)是R上的增函数,
从而f(f(x))≠f(x)=x,这与f(f(x))=x矛盾,
故必有:f(x)=x
∴x∈M,
综上所述:M=N,
∴|M|=|N|
故选A.
看了设集合M={x|f(x)=x}...的网友还看了以下:
已知f(x)是R上的偶函数,当x≧0时,f(x)=√x,(1)求f(x)的解析式(2)判断f(已知f 2020-03-31 …
设y=f(x)为定义在I上的函数若对I上的任意两个实数x1x2都有f(﹙x1+x2﹚/2)≦1/2 2020-06-04 …
已知函数f(X)=loga(x-1分之1-kx)(a>1)是奇函数,f(-x)+f(x)=01.求 2020-06-09 …
设f(x)在x=a处连续,φ(x)在x=a处间断,又f(a)≠0,则()A.φ[f(x)]在x=a 2020-06-12 …
1.已知f(x)是定义在R上的函数,设g(x)=[f(x)+f(-x)]/2,h(x)=[f(x) 2020-07-19 …
设f(x),g(x)在(-∞,+∞)上有定义,且x=x1是f(x)的唯一间断点,x=x2是g(x) 2020-07-22 …
定义在(-1,1)上的函数f(x).对任意x,y∈(-1,1),都有f(x)+f(y)=f((x+y 2020-11-01 …
高等数学微积分连续间断高等数学微积分连续间断f(x)只在(a,b)上有定义,x=a和x=b算不算它的 2020-11-15 …
x=1/n(n=2,3,……)是函数f(x)=x*[1/x]的([]为取整函数)()A,无穷间断点B 2020-11-22 …
求文档:f(x)=a*x^2+b*x+c,a>b>c,a+b+c=0,若存在实数x,使得a*x^2+ 2021-01-01 …