早教吧作业答案频道 -->数学-->
解题人的解题方法是怎么来的,有例子啊原题:x^2/8+y^2/4=1是否存在圆心在原点的圆,使得圆的任意一条切线与椭圆恒有两个交点AB且OA⊥OB,圆的方程解法:设y=kx+m,y=kx+m,x2/8+y2/4=1∴(1+2k2)x2+4kmx+2
题目详情
解题人的解题方法是怎么来的,有例子啊
原题:
x^2/8+y^2/4=1是否存在圆心在原点的圆,使得圆的任意一条切线与椭圆恒有两个交点AB且OA⊥OB,圆的方程
解法:设y=kx+m,y=kx+m,x2/8+y2/4=1∴(1+2k2)x2+4kmx+2m2-8=0当△=8(8k2-m2+4)>0x1+x2=-4km/1+2k2x1x2=2m2-8/1+2k2y1y2=m2-8k2/1+2k2,OA⊥OB∴x1x2+y1y2=0∴3m2-8k2-8=0∴ k2=3m2-8/8≥0又 8k2-m2+4>0∴ m2>2,3m2≥8∴ m≥2√6/3或m≤-2√6/3又y=kx+m与圆心在原点的圆相切∴ r=|m|/√1+k2,r=2√6/3∴ x2+y2=8/3
我想问的是,解法中设了3个变量,r k m,而最后得出的r是一个确切的值.那么解答的人在设变量的时候怎么知道最后r的值会不会和其中一个变量有关,例如:r=m/x,(x为一个常数).我就是非常非常的好奇,他是怎么知道最后m可以约掉的.解题的时候总不会说在我不知道结果的情况下就冒险的试一试,结果就得到了答案,另一个变量m刚好就没了.不会有这么巧合的事情吧.当然,我的想法是,本质上是由r来决定m k的的值的,所以在垂直的情况下,r m的关系是定的,也就是m(说不下了).可以同其他的例子类比一下,也会有同样的情况.
为什么没人回答啊?喂.我真的想知道答案啊.
原题:
x^2/8+y^2/4=1是否存在圆心在原点的圆,使得圆的任意一条切线与椭圆恒有两个交点AB且OA⊥OB,圆的方程
解法:设y=kx+m,y=kx+m,x2/8+y2/4=1∴(1+2k2)x2+4kmx+2m2-8=0当△=8(8k2-m2+4)>0x1+x2=-4km/1+2k2x1x2=2m2-8/1+2k2y1y2=m2-8k2/1+2k2,OA⊥OB∴x1x2+y1y2=0∴3m2-8k2-8=0∴ k2=3m2-8/8≥0又 8k2-m2+4>0∴ m2>2,3m2≥8∴ m≥2√6/3或m≤-2√6/3又y=kx+m与圆心在原点的圆相切∴ r=|m|/√1+k2,r=2√6/3∴ x2+y2=8/3
我想问的是,解法中设了3个变量,r k m,而最后得出的r是一个确切的值.那么解答的人在设变量的时候怎么知道最后r的值会不会和其中一个变量有关,例如:r=m/x,(x为一个常数).我就是非常非常的好奇,他是怎么知道最后m可以约掉的.解题的时候总不会说在我不知道结果的情况下就冒险的试一试,结果就得到了答案,另一个变量m刚好就没了.不会有这么巧合的事情吧.当然,我的想法是,本质上是由r来决定m k的的值的,所以在垂直的情况下,r m的关系是定的,也就是m(说不下了).可以同其他的例子类比一下,也会有同样的情况.
为什么没人回答啊?喂.我真的想知道答案啊.
▼优质解答
答案和解析
来私聊一下吧
看了解题人的解题方法是怎么来的,有...的网友还看了以下:
高一数学必修1有关指数的题1.函数f(x)=(2分之1)的x分之1次方的定义域是?值域是?2.方程 2020-04-26 …
求圆的切线方程过点P(-2,-1)作圆(x-1)^2+y^2=2的切线.求:(1)切线的方程(2) 2020-05-16 …
关于二项式定理的.化简(1+X的平方根)的5次方+(1-X的平方根)的五次方化简(2*X的2分之1 2020-05-16 …
数列公式1立方+2立方+.n立方=1/4n方*(n+1)方的推导过程,不要数学归纳法,用找规律法 2020-06-11 …
已知x-1与y+1互为负倒数.求y的-1次方-x的-1次方的值已知x-1与y+1互为负倒数.求y的 2020-07-30 …
非空真子集的个数是2的n-1次方还是2的n次方减2?参考书上写的是2的n-1次方,但很多人都说是2 2020-08-01 …
1.代数式5²×3的2n+1次方×2的n次方-3的n次方×6的n+2次方(其中n为正整数)能被13 2020-08-02 …
有一数列,1开一次方,2开2次方,3开3次方,...求n开n次方和n+1开n+1次方的大小. 2020-11-20 …
三个数:2的2分之1次方,3分之2的-1次方,3的3分之1次方的大小关系是(要步骤),谢谢.我已经比 2020-12-17 …
很多人都说1平方的铜线对应1千瓦为什么4台2千瓦的单相电器只要4平方又有很多人说2.5就可以承受4千 2021-01-22 …