早教吧作业答案频道 -->其他-->
阅读理解:在解形如3|x-2|=|x-2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:①当x<2时,原方程可化为-3(x-2)=-(x-2)+4,解得:x=0,符合x<2②当x
题目详情
阅读理解:
在解形如3|x-2|=|x-2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:
①当x<2时,原方程可化为-3(x-2)=-(x-2)+4,解得:x=0,符合x<2
②当x≥2时,原方程可化为3(x-2)=(x-2)+4,解得:x=4,符合x≥2
∴原方程的解为:x=0,x=4.
解题回顾:本题中2为x-2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论.
知识迁移:
(1)运用整体思想先求|x-3|的值,再去绝对值符号的方法解方程:|x-3|+8=3|x-3|;
知识应用:
(2)运用分类讨论先去绝对值符号的方法解类似的方程:|2-x|-3|x+1|=x-9.
提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?
在解形如3|x-2|=|x-2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:
①当x<2时,原方程可化为-3(x-2)=-(x-2)+4,解得:x=0,符合x<2
②当x≥2时,原方程可化为3(x-2)=(x-2)+4,解得:x=4,符合x≥2
∴原方程的解为:x=0,x=4.
解题回顾:本题中2为x-2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论.
知识迁移:
(1)运用整体思想先求|x-3|的值,再去绝对值符号的方法解方程:|x-3|+8=3|x-3|;
知识应用:
(2)运用分类讨论先去绝对值符号的方法解类似的方程:|2-x|-3|x+1|=x-9.
提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?
▼优质解答
答案和解析
(1)移项得|x-3|-3|x-3|=-8,合并得-2|x-3|=-8,两边除以-2得|x-3|=4,所以x-3=±4,∴x=-1或7;(2)当x≤-1,原方程可化为2-x+3(x+1)=x-9,解得x=-14,符合x≤-1;当-1<x≤2,原方程可化为2-x-3(x+1)=x-9,...
看了阅读理解:在解形如3|x-2|...的网友还看了以下:
先化简,再求值 (1)[(x-y)的平方+(x+y)(x-y)]÷2x 其中X=2010,y=20 2020-05-16 …
已知3f(x)+2f(x)=x,求f(x)怎么算我自己算了一半因为3f(x)+2f(x)=x3f( 2020-06-03 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
设f(x)=ln10x,g(x)=x,h(x)=ex10,则当x充分大时有()A.g(x)<h(x 2020-06-18 …
回归直线方程y和x可以颠倒吗(自变量与估计值可不可以颠倒)比如求得y^=ax+b,这是根据x求y的 2020-07-05 …
回归直线方程y和x可以颠倒吗(自变量与估计值可不可以颠倒)比如求得y^=ax+b,这是根据x求y的 2020-07-20 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
若函数f(x),g(x)的定义域都是R,则f(x)>g(x)(x∈R)的充要条件是?A.存在一个属 2020-08-02 …
求ln[(1+X)/(1-X)]的导数求ln[(1+X)/(1-X)]导数的思路和答案我知道lnx的 2020-10-31 …
我快死了……函数的一般表达式是什么?是不是y=f(x)(x∈A)?f是某个对应关系,那么这个f(x) 2020-11-01 …