早教吧作业答案频道 -->数学-->
关于线性代数的问题,急·····1)设A为n阶矩阵,若存在正整数k使得A^k=O,则称A为幂零矩阵,证明:幂零矩阵的特征值只能是0;2)设a是n阶对称矩阵A的对应于特征值r的特征向量,求矩阵(P^-
题目详情
关于线性代数的问题,急·····
1)设A为n阶矩阵,若存在正整数k使得A^k=O,则称A为幂零矩阵,证明:幂零矩阵的特征值只能是0;
2)设a是n阶对称矩阵A的对应于特征值r的特征向量,求矩阵(P^-1AP)’对应于特征值r的特征向量
3)若P^-1AP=B,P^-1A’P=B’,则A+A’~B+B’,AA’~BB’
1)设A为n阶矩阵,若存在正整数k使得A^k=O,则称A为幂零矩阵,证明:幂零矩阵的特征值只能是0;
2)设a是n阶对称矩阵A的对应于特征值r的特征向量,求矩阵(P^-1AP)’对应于特征值r的特征向量
3)若P^-1AP=B,P^-1A’P=B’,则A+A’~B+B’,AA’~BB’
▼优质解答
答案和解析
第一题.若a为特征值,b为特征向量.可由A^k=O 推出 A^k*b=O,所以 a^k*b=O.因为b是非零向量,所以a^k=0 第二题 已知 Aa=ra.所以p^-1APa=rP^-1aP 所以 (p^-1APa)'=(rP^-1aP)'所以 a'(P^-1AP)’=r^n-1(P^-1aP)'=r^n...
看了 关于线性代数的问题,急···...的网友还看了以下:
已知A是n阶矩阵,满足A^2-2A-3E=0,求矩阵的特征值,答案里有一步运算我想确认一下原理设k 2020-04-13 …
特征向量题设三阶实对称矩阵A的特征值为1,2,3;矩阵A的属于特征值1,2的特征向量分别是a1=( 2020-04-13 …
样本的K阶原点矩为什么不能用原点矩的定义求,原点矩的定义:E(X^k),原点矩的定义:E(X^k) 2020-04-26 …
概率论里k阶原点矩和k阶中心矩的实际含义是什么啊?书上只是说1阶原点矩是期望,2阶中心矩是方差.那 2020-04-26 …
概率论里k阶原点矩和k阶中心矩的实际含义是什么啊? 2020-05-20 …
是不是对于所有n×n的矩阵A,都可以有A^k的幂运算呢,那怎么保证A^(k-1)·A=A·A^(k 2020-06-10 …
判断题:1设A,B是同阶对称矩阵,则AB也是对称矩阵.()2设n阶方阵A,B,C满足关系式BCA= 2020-06-18 …
设A,B是两个n阶实对称矩阵,且A-B是正定的,K(A)表示A的所有k阶主子式的和,问是否有K(A) 2021-01-08 …
线性代数设n阶矩阵A满足关系式A^2+2A-3E=0则实数K满足什么条件时,A+kE是可逆的,并求它 2021-02-05 …
问几道《矩阵论》的题1设A为n阶复矩阵,已知A的k重特征值,并且秩A=秩A2(A的平方),求证:秩A 2021-02-10 …