早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,海上有A,B两个小岛相距10km,船O将保持观望A岛和B岛所成的视角为60°,现从船O上派下一只小艇沿BO方向驶至C处进行作业,且OC=BO.设AC=xkm.(1)若AO=1033km,求出x的取值;(2)用x分

题目详情
如图,海上有A,B两个小岛相距10km,船O将保持观望A岛和B岛所成的视角为60°,现从船O上派下一只小艇沿BO方向驶至C处进行作业,且OC=BO.设AC=xkm.
(1)若AO=
10
3
3
km,求出x的取值;
(2)用x分别表示OA2+OB2和OA•OB,并求出x的取值范围.
▼优质解答
答案和解析
(1)在△OAB中,AO=
10
3
3
km,∠AOB=60°,AB=10km,
由余弦定理知:AB2=OA2+OB2-2•OA•OB•cos60°,
即有:100=
100
3
+OB2-2×
10
3
3
×OB×
1
2
,从而解得:OB=
20
3
3

在△OAC中,OC=OB=
20
3
3
,OA=
10
3
3
,∠AOC=120°,
由余弦定理知:AC2=OA2+OC2-2•OA•OC•cos120°,
即有:AC2=
400
3
+
100
3
-2×
20
3
3
×
10
3
3
×(−
1
2
)=
700
3
,从而解得:AC=
10
21
3

(2)在△OAC中,∠AOC=120°,AC=x,
由余弦定理得,OA2+OC2-2OA•OC•cos120°=x2
又OC=BO,
所以OA2+OB2-2OA•OB•cos120°=x2 ①,…(7分)
在△OAB中,AB=10,∠AOB=60°
由余弦定理得,
OA2+OB2-2OA•OB•cos60°=100 ②,…(9分)
①+②得OA2+OB2=
x2+100
2

①-②得4OA•OB•cos60°=x2-100,即OA•OB=
x2−100
2
,…(10分)
又OA2+OB2≥2OA•OB,所以
x2+100
2
≥2x
x2−100
2
,即x2≤300,
又OA•OB=
x2−100
2
>0,即x2>100,所以10<x≤10
3
      …(12分)