早教吧作业答案频道 -->其他-->
正方形ABCD边长为2E,F为AB,BC中点将▲AED▲BEF▲CFD折起交O,点O,E,F,D在同一个球面上,求该外接球半径
题目详情
正方形ABCD边长为 2 E,F 为AB,BC中点将▲AED▲BEF▲CFD折起交O,点O,E,F,D在同一个球面上,求该外接球半径
▼优质解答
答案和解析
在三棱锥D-OEF中DO⊥OE,DO⊥OF,OE⊥OF,
DO=2,OE=OF=1.
三棱锥D-OEF的外接球直径=以OD,OE,OF为棱的长方体的对角线=√6,
∴该外接球半径=√6/2.
DO=2,OE=OF=1.
三棱锥D-OEF的外接球直径=以OD,OE,OF为棱的长方体的对角线=√6,
∴该外接球半径=√6/2.
看了 正方形ABCD边长为2E,F...的网友还看了以下:
设随机变量x的概率密度为f(x)=e^-x,x>0,f(x)=0,其它,求y=x^2的概率密度 2020-05-15 …
若函数f(x)=e^x.sinx,则此图像在点(4,f(4))处的切线的倾斜角为f(x)=e^x. 2020-05-16 …
已知随机变量X的概率密度为:f(x)={e^-x,x>0 0,其他},求Y=x^2的概率密度. 2020-05-17 …
初二平行四边形证明如图所示,已知点AEFD在同一条直线上,AE=DF,BF⊥AD,锤足分别为F、E 2020-05-17 …
曲线f(x)=e^x+x^2在点(0,1)处切线方程为?f'(x)=e^x+2x,为什么切线斜率为 2020-05-23 …
如图,点A(2,2)在双曲线y1=kx(x>0)上,点C在双曲线y2=-9x(x<0)上,分别过A 2020-06-16 …
AB是圆O的直径,弦CD垂直AB,垂足为F,点E在圆O上,∠ABD与∠AEC相等吗,为什么 2020-07-13 …
f(x)=e^x是以2π为周期的函数,在「-π,π)上的表达式为f(x)=e^x,则f(x)的傅立 2020-07-13 …
如图所示,已知AB=AC,D是BC上任意的一点,过点D分别作AB和AC的垂线,垂足分别为F和E,过 2020-07-30 …
求解一道关于最大似然估计值的题目.OMG一直某种电子元件的使用寿命T是一个随机变量,它的概率密度为f 2020-12-31 …