早教吧作业答案频道 -->其他-->
已知函数f(x)=kx+1,x≤0log2x,x>0下列是关于函数y=f[f(x)]+1的零点个数的4个判断:①当k>0时,有3个零点;②当k<0时,有2个零点;③当k>0时,有4个零点;④当k<0时,有1个零点.则
题目详情
已知函数f(x)=
下列是关于函数y=f[f(x)]+1的零点个数的4个判断:
①当k>0时,有3个零点;
②当k<0时,有2个零点;
③当k>0时,有4个零点;
④当k<0时,有1个零点.
则正确的判断是( )
A.①④
B.②③
C.①②
D.③④
|
①当k>0时,有3个零点;
②当k<0时,有2个零点;
③当k>0时,有4个零点;
④当k<0时,有1个零点.
则正确的判断是( )
A.①④
B.②③
C.①②
D.③④
▼优质解答
答案和解析
由y=f[f(x)]+1=0得f[f(x)]+1=0,即f[f(x)]=-1,
设f(x)=t,则方程f[f(x)]=-1等价为f(t)=-1,
①若k>0,作出函数f(x)的图象如图:
∵f(t)=-1,
∴此时方程f(t)=-1有两个根其中t2<0,0<t1<1,
由f(x)=t2,<0,知此时x有两解,
由f(x)=t1∈(0,1)知此时x有两解,
此时共有4个解,即函数y=f[f(x)]+1有4个零点.
②若k<0,作出函数f(x)的图象如图:
∵f(t)=-1,
∴此时方程f(t)=-1有一个根t1,其中0<t1<1,
由f(x)=t1∈(0,1)知此时x只有1个解,
即函数y=f[f(x)]+1有1个零点.
综上:只有③④正确,
故选:D.
设f(x)=t,则方程f[f(x)]=-1等价为f(t)=-1,
①若k>0,作出函数f(x)的图象如图:

∵f(t)=-1,
∴此时方程f(t)=-1有两个根其中t2<0,0<t1<1,
由f(x)=t2,<0,知此时x有两解,
由f(x)=t1∈(0,1)知此时x有两解,
此时共有4个解,即函数y=f[f(x)]+1有4个零点.
②若k<0,作出函数f(x)的图象如图:
∵f(t)=-1,
∴此时方程f(t)=-1有一个根t1,其中0<t1<1,
由f(x)=t1∈(0,1)知此时x只有1个解,
即函数y=f[f(x)]+1有1个零点.
综上:只有③④正确,
故选:D.
看了已知函数f(x)=kx+1,x...的网友还看了以下:
已知双曲线y=k/x(k>0)点A(m,n)(m>0)在此双曲线上,过点A作AB⊥y轴交于点B,点C 2020-03-31 …
一次函数y=kx+b的图象经过点(1,m)和点(m,-1),其中m>1,则k、b应满足的条件是() 2020-04-08 …
已知关于x,y的二元一次方程组{x-y=k,x+3y=3k-1的解满足满足x>0,y<0 求k的取 2020-05-16 …
抛物线y=ax^2+bx(a>0)与双曲线y=k/x相交于点A、B,已知点A的坐标为(1,4),△ 2020-06-14 …
已知如图示直线y=kx+b与反比例函数y=6/x(x>0)相交于A(1,m)和B(n,2)两点.将 2020-06-15 …
已知集合M={(x,y)│x>0,y>0,x+y=k},其中k为正常数.(1)设t=xy,求t的取 2020-07-09 …
如图所示,已知点(1,3)在函数y=k/x(x>0)的图象上,矩形ABCD的边BC在X轴上,E是对 2020-08-01 …
已知反比例函数y=k|x(k>0)图像上三点的坐标分别是(x1,y1)、(x2,y2)、(x3,y 2020-08-02 …
已知反比例函数y=k/x(k>0)图像上三点的坐标分别是(x1,y1),(x2,y2),(x3,y3 2020-10-31 …
如图,已知直线y=1/2x与双曲线y=k/x(k>0)交于A,B两点,且点A的横坐标为4.(1)求k 2020-12-10 …