早教吧作业答案频道 -->其他-->
如图,在正方形ABCD中,对角线AC,BD交于点O,折叠正方形ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展平后,折痕DE分别交AB,AC于点E,G,连接GF,下列结论:①AE=AG;②tan∠AGE=2;③S△DOG=
题目详情

①AE=AG;②tan∠AGE=2;③S△DOG=S四边形EFOG;④四边形ABFG为等腰梯形;⑤BE=2OG.
其中一定正确的是______.
▼优质解答
答案和解析
∵四边形ABCD是正方形,
∴∠DAC=∠ADB=∠ABD=45°,
由折叠的性质可得:∠ADE=∠FDE=
∠ADB=22.5°,
则∠AEG=90°-∠ADE=67.5°,∠AGE=∠ADE+∠DAC=22.5°+45°=67.5°,
∵∠AGE=∠AEG=67.5°,
∴AE=AG,即①正确;
设EF=x,则AE=x,BE=EF=
x,AB=AE+BE=(
+1)x,
tan∠AGE=tan∠AEG=
=
=
+1.即②错误;
∵AB=(
+1)x,
∴AO=(1+
)x,OG=AO-AG=AO-AE=
x,
易得△DOG∽△DFE,
∵
=(
2=
,
∴可得S△DOG=S四边形EFOG
∴∠DAC=∠ADB=∠ABD=45°,
由折叠的性质可得:∠ADE=∠FDE=
1 |
2 |
则∠AEG=90°-∠ADE=67.5°,∠AGE=∠ADE+∠DAC=22.5°+45°=67.5°,
∵∠AGE=∠AEG=67.5°,
∴AE=AG,即①正确;
设EF=x,则AE=x,BE=EF=
2 |
2 |
tan∠AGE=tan∠AEG=
AD |
AE |
AB |
AE |
2 |
∵AB=(
2 |
∴AO=(1+
| ||
2 |
| ||
2 |
易得△DOG∽△DFE,
∵
S△DOG |
SDFE |
OG |
EF |
1 |
2 |
∴可得S△DOG=S四边形EFOG
看了如图,在正方形ABCD中,对角...的网友还看了以下:
[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)中的g(x)g‘(x)分别代表什么[ 2020-04-26 …
设函数f(x),g(x)在[a,b]上内二阶可导且存在相等的最大值,又f(a)=g(a),f(b) 2020-06-16 …
已知集合A={5,6,7,8},设f,g都是由A到A的映射,其对应法则分别如表1和表2所示:则与f 2020-07-13 …
高数导数问题.设f(x)=(e^x-e^a)g(x)在x=a处可导,则函数g(x)应该满足条件是? 2020-07-20 …
设函数f,g,h∈R,且有f(x)=x+3,g(x)=2x+1,h(x)=x/2,求出f○g,g○ 2020-07-26 …
函数f(x)与y=a^x的图象关于y=x对称,记g(x)=f(x)[f(x)+2f(2)-1].若 2020-08-01 …
设f,g都是由A到B的映射,其中对应法则(从上到下)如下表:则与f[g(1)]相同的是()A.g[ 2020-08-02 …
关于f(g(x))和g(f(x))的问题f(X)是一个一次函数g(x)是个分段函数现在求f(g(x 2020-08-02 …
设函数f(x),g(x)在[a,b]上内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)= 2020-11-24 …
如图所示,以O为支点,杠杆(自重不计)在力F和重力G的作用下,在水平位置处于平衡状态,下列判断中正确 2020-12-17 …