早教吧作业答案频道 -->数学-->
已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3.(1)求数列{an}的通项公式;(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
题目详情
已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3.
(1)求数列{an}的通项公式;
(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
(1)求数列{an}的通项公式;
(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
▼优质解答
答案和解析
(1)当n=1时,a1=s1=
+
a1−
,解出a1=3,
又4Sn=an2+2an-3①
当n≥2时4sn-1=an-12+2an-1-3②
①-②4an=an2-an-12+2(an-an-1),即an2-an-12-2(an+an-1)=0,
∴(an+an-1)(an-an-1-2)=0,
∵an+an-1>0∴an-an-1=2(n≥2),
∴数列{an}是以3为首项,2为公差的等差数列,∴an=3+2(n-1)=2n+1.
(2)Tn=3×21+5×22+…+(2n+1)•2n③
又2Tn=3×22+5×23+(2n-1)•2n+(2n+1)2n+1④
④-③Tn=-3×21-2(22+23++2n)+(2n+1)2n+1-6+8-2•2n-1+(2n+1)•2n+1=(2n-1)•2n+2
1 |
4 |
a | 2 1 |
1 |
2 |
3 |
4 |
又4Sn=an2+2an-3①
当n≥2时4sn-1=an-12+2an-1-3②
①-②4an=an2-an-12+2(an-an-1),即an2-an-12-2(an+an-1)=0,
∴(an+an-1)(an-an-1-2)=0,
∵an+an-1>0∴an-an-1=2(n≥2),
∴数列{an}是以3为首项,2为公差的等差数列,∴an=3+2(n-1)=2n+1.
(2)Tn=3×21+5×22+…+(2n+1)•2n③
又2Tn=3×22+5×23+(2n-1)•2n+(2n+1)2n+1④
④-③Tn=-3×21-2(22+23++2n)+(2n+1)2n+1-6+8-2•2n-1+(2n+1)•2n+1=(2n-1)•2n+2
看了已知数列{an}的各项均为正数...的网友还看了以下:
在等比数列{an}中,a2=4,a5=32(n∈N*)(Ⅰ)求数列{an}的通项公式an;(Ⅱ)若 2020-05-13 …
在等比数列{an}中,a2=4,a5=32(n∈N*)(Ⅰ)求数列{an}的通项公式an;(Ⅱ)若 2020-05-13 …
已知递增数列{an}满足:a1=1,2a(n+1)=an+a(n+2)(n∈N*),且a1,a2, 2020-05-13 …
在等差数列{an}和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b 2020-05-14 …
数列{a n }的通项公式为an=n2*cos(2nπ/3),其前n项和为Sn求A3n-2 +A3 2020-05-15 …
高中数列由递推求通项已知a1=1/3;a2=1/3;an=(1-2M)*N*N/(2*N*N-4* 2020-07-11 …
数列{an}满足a1=1,an=3an-1-4n+6(n≥2,n∈N*).(1)设bn=an-2n 2020-07-26 …
(一)已知无穷数列1*2,2*3,3*4,...,n(n+1),.1、求这个数列的第10项,第31 2020-08-02 …
数列运算的一个步骤始终搞不懂结果怎么求得已知数列的前N项和Sn.求通项an例1Sn=4/3*(1-5 2020-11-15 …
Sn数列an前n项和Sn=(an+1)^2/4(an>0)不要用Sn-S(n-1)的方法,请用先求S 2020-12-05 …