早教吧作业答案频道 -->其他-->
设f(x)=x2−3x+82(x≥2),g(x)=ax(x>2).(1)若∃x0∈[2,+∞),使f(x0)=m成立,则实数m的取值范围是(2)若∀x1∈[2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范
题目详情
设f(x)=
(x≥2),g(x)=ax(x>2).
(1)若∃x0∈[2,+∞),使f(x0)=m成立,则实数m的取值范围是______
(2)若∀x1∈[2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为
x2−3x+8 |
2 |
(1)若∃x0∈[2,+∞),使f(x0)=m成立,则实数m的取值范围是______
(2)若∀x1∈[2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为
(1,
)
3 |
(1,
)
.3 |
▼优质解答
答案和解析
(1)f(x)=
=
(x−
)2−
当x≥2时,函数f(x)单调增,所以f(x)min=3
∵∃x0∈[2,+∞),使f(x0)=m成立,
∴实数m的取值范围是[3,+∞)
(2)∀x1∈[2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),即使得f(x)的值域是g(x)值域的子集
∀x∈[2,+∞),f(x)的值域为[3,+∞)
当a>1时,g(x)=ax(x>2)的值域为(a2,+∞),∴a2<3,∴1<a<
当0<a<1时,函数为减函数,显然不成立
综上,实数a的取值范围为(1,
)
故答案为:[3,+∞),(1,
)
x2−3x+8 |
2 |
1 |
2 |
3 |
2 |
23 |
8 |
当x≥2时,函数f(x)单调增,所以f(x)min=3
∵∃x0∈[2,+∞),使f(x0)=m成立,
∴实数m的取值范围是[3,+∞)
(2)∀x1∈[2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),即使得f(x)的值域是g(x)值域的子集
∀x∈[2,+∞),f(x)的值域为[3,+∞)
当a>1时,g(x)=ax(x>2)的值域为(a2,+∞),∴a2<3,∴1<a<
3 |
当0<a<1时,函数为减函数,显然不成立
综上,实数a的取值范围为(1,
3 |
故答案为:[3,+∞),(1,
3 |
看了设f(x)=x2−3x+82(...的网友还看了以下:
奇函数的对称轴如果f(2-x)=f(2+x),f(7-x)=f(7+x),所以函数的关于x=2或者 2020-05-19 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任何实数x 2020-06-06 …
已知函数f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y)(x,y>0) 2020-06-08 …
在同一对应法则f下,f(x)中的x与f[g(x)]中的g(x)两者的范围应该是一致的?在同一对应法 2020-06-12 …
已知f(x)=x2+mx+1(m∈R),g(x)=ex.(1)当x∈[0,2]时,F(x)=f(x 2020-07-26 …
函数f(X)对任意a,b都有f(a+b)=f(a)+f(b)-1,且当X〉0时有f(x)〉1.求证 2020-08-01 …
已知函数f(x)=x-1-lnx,g(x)=ex-e-x-ax(e为自然对数的底数).(1)若g( 2020-08-02 …
设函数f(x)是定义在R上的函数,并且满足以下条件:对任意正数x,y都有f(xy)=f(x)+f(y 2020-12-08 …
已知函数f(x)=lnx+b•x2的图象过点(1,0)(I)求f(x)的解析式;(Ⅱ)若f(x)≥t 2020-12-27 …