早教吧作业答案频道 -->其他-->
设f(x)=x2−3x+82(x≥2),g(x)=ax(x>2).(1)若∃x0∈[2,+∞),使f(x0)=m成立,则实数m的取值范围是(2)若∀x1∈[2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范
题目详情
设f(x)=
(x≥2),g(x)=ax(x>2).
(1)若∃x0∈[2,+∞),使f(x0)=m成立,则实数m的取值范围是______
(2)若∀x1∈[2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为
| x2−3x+8 |
| 2 |
(1)若∃x0∈[2,+∞),使f(x0)=m成立,则实数m的取值范围是______
(2)若∀x1∈[2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为
(1,
)
| 3 |
(1,
)
.| 3 |
▼优质解答
答案和解析
(1)f(x)=
=
(x−
)2−
当x≥2时,函数f(x)单调增,所以f(x)min=3
∵∃x0∈[2,+∞),使f(x0)=m成立,
∴实数m的取值范围是[3,+∞)
(2)∀x1∈[2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),即使得f(x)的值域是g(x)值域的子集
∀x∈[2,+∞),f(x)的值域为[3,+∞)
当a>1时,g(x)=ax(x>2)的值域为(a2,+∞),∴a2<3,∴1<a<
当0<a<1时,函数为减函数,显然不成立
综上,实数a的取值范围为(1,
)
故答案为:[3,+∞),(1,
)
| x2−3x+8 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 23 |
| 8 |
当x≥2时,函数f(x)单调增,所以f(x)min=3
∵∃x0∈[2,+∞),使f(x0)=m成立,
∴实数m的取值范围是[3,+∞)
(2)∀x1∈[2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),即使得f(x)的值域是g(x)值域的子集
∀x∈[2,+∞),f(x)的值域为[3,+∞)
当a>1时,g(x)=ax(x>2)的值域为(a2,+∞),∴a2<3,∴1<a<
| 3 |
当0<a<1时,函数为减函数,显然不成立
综上,实数a的取值范围为(1,
| 3 |
故答案为:[3,+∞),(1,
| 3 |
看了设f(x)=x2−3x+82(...的网友还看了以下:
已知三条直线L1:mx-y+m=0,L2:x-my-m(m+1)=0,L3:(m+1)x-y+(m 2020-04-27 …
解方程:1、x除三分之二=2.5 2、5x减1.5x乘8=0 3、5x减x=0.36 4、八分之( 2020-05-16 …
设f(x)=|x(1-x)|,则()A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x) 2020-06-30 …
lg(3-4x+x^2)的定义域为M,f(x)=4^x-2^(x-1)(X属于M)1,求f(x)的 2020-07-16 …
已知sinx+cosx=m在[0,π]内有且只有两个不同的解α、β,求实数m的取值范围,并求α+β 2020-07-26 …
下列选项中的M和P表示同一集合的是()A.M=(x属于R丨x²+0.01=0),P=(x丨x²=0 2020-07-30 …
1.设全集U=R,M={x|x大于等于1},N={x|0小于等于x小于5},则(CuM)∪(CuN 2020-07-30 …
曲线y=f(x)≥0(x≥0)围成一以[0,x]为底的曲边梯形,其面积与f(x)的4次幂...曲线y 2020-10-30 …
下列各选项中的M与P表示同一个集合的是()A.M={x∈R|x2+0.01=0},P={x|x2=0 2020-10-31 …
1、设函数f(x)=x分之m+m(x≠0)且f(1)=2,则f(2)=2、下列函数中,满足关系f(x 2020-12-17 …