早教吧作业答案频道 -->其他-->
已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2与a4的等差中项.(1)求数列{an}的通项公式;(2)若Tn=na1+(n-1)a2+…+2an-1+an,求Tn.
题目详情
已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2与a4的等差中项.
(1)求数列{an}的通项公式;
(2)若Tn=na1+(n-1)a2+…+2an-1+an,求Tn.
(1)求数列{an}的通项公式;
(2)若Tn=na1+(n-1)a2+…+2an-1+an,求Tn.
▼优质解答
答案和解析
(1)∵单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2与a4的等差中项,
∴2(a3+2)=a2+a4,
代入a2+a3+a4=28,
解得a3=8,
∴a2+a4=20,
设首项为a1,公比为q,
∴
,
解得a1=2,q=2,或a1=32,q=
,
又{an}单调递增,∴q=2,a1=2,
∴an=2n.
(2)Tn=na1+(n-1)a2+…+2an-1+an
=n•2+(n-1)•22+(n-2)•23+…+2•2n-1+2n,①
2Tn=n•22+(n-1)•23+…+2•2n+2n+1,②
②-①得:Tn=−2n+22+23+…+2n+2n+1
=-2n+
=2n+2-2n-4.
∴2(a3+2)=a2+a4,
代入a2+a3+a4=28,
解得a3=8,
∴a2+a4=20,
设首项为a1,公比为q,
∴
|
解得a1=2,q=2,或a1=32,q=
1 |
2 |
又{an}单调递增,∴q=2,a1=2,
∴an=2n.
(2)Tn=na1+(n-1)a2+…+2an-1+an
=n•2+(n-1)•22+(n-2)•23+…+2•2n-1+2n,①
2Tn=n•22+(n-1)•23+…+2•2n+2n+1,②
②-①得:Tn=−2n+22+23+…+2n+2n+1
=-2n+
22(1−2n) |
1−2 |
=2n+2-2n-4.
看了 已知单调递增的等比数列{an...的网友还看了以下:
求[4-2^(n+1)]/[2^n+2^(n+2)]的极限就是lim[4-2^(n+1)]/[2^n 2020-03-31 …
求数列0,1,1,2,2,3,3,4,4.的前n项和S当n是奇数时.S=2*{[(n-1)/2]* 2020-04-09 …
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n 2020-05-16 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
2^2-1^2=2*1+13^2-2^2=2*2+14^2-3^2=2*3+1……(n+1)^2- 2020-05-19 …
数学必修5急.求等比数列{an}的前n项和sn(1)a1=3,q=2,n=6(2)a1=-2.7, 2020-06-06 …
求此极限,n趋于无穷,limln(1+1/n)^2+(1+2/n)^2+(1+n/n)^2liml 2020-06-14 …
an/a(n-1)=(n-1)/(n+1)a3/a2=2/4a2/a1=1/3.上面几式相乘得an 2020-07-09 …
设数列{an}的前n项和为sn,已知sn=2an-2^(n+1),(1).求证数列{an/2^n} 2020-07-23 …
设f(x)=lim[(n-2)(x^2+x-2)]/[n(x^2+3x+2)+1]x→+∞thank 2020-11-27 …