早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图①,用两个全等的等边三角形△ABC和△ACD拼成四边形ABCD,把一个含60°角的三角尺与四边形重叠,使60°角顶点与A重合,两边分别与AB,AC重合,现将三角形绕A点按逆时针方向旋转.(1)

题目详情
如图①,用两个全等的等边三角形△ABC和△ACD拼成四边形ABCD,把一个含60°角的三角尺与四边形重叠,使60°角顶点与A重合,两边分别与AB,AC重合,现将三角形绕A点按逆时针方向旋转.
(1)当三角尺两边与BC,CD相交于E,F时(如图②),请判断∠BAE与∠CAF是否相等,请说明理由.
(2)在(1)的条件下,观察BE,CF的长度,你得到什么结论,请说明理由.
(3)当三角尺的两边与BC,CD的延长线相交于E,F时(如图③),(2)中的结论还成立吗?请说明理由.
▼优质解答
答案和解析
(1)相等,
证明:在△ABE和△ACF中,
∵∠BAE+∠EAC=∠CAF+∠EAC=60°,
∴∠BAE=∠CAF,
∠BAE=∠CAF
AB=AC
∠B=∠ACF=60°

∴△ABE≌△ACF(ASA),
∴∠BAE=∠CAF,

(2)BE=CF,
理由:在△ABE和△ACF中,
∵∠BAE+∠EAC=∠CAF+∠EAC=60°,
∴∠BAE=∠CAF,
∠BAE=∠CAF
AB=AC
∠B=∠ACF=60°

∴△ABE≌△ACF(ASA),
∴BE=CF,

(3)BE=CF仍然成立,
根据三角形全等的判定公理,同样可以证明△ABE和△ACF全等,BE和CF是它们的对应边,
∴BE=CF仍然成立.