早教吧作业答案频道 -->其他-->
(2014•福田区模拟)如图所示,对称轴是x=-1的抛物线与x轴交于A、B(1,0)两点,与y轴交于点C(3,0),作直线AC,点P是线段AB上不与点A、B重合的一个动点,过点P作y轴的平行线,交直线AC
题目详情
(2014•福田区模拟)如图所示,对称轴是x=-1的抛物线与x轴交于A、B(1,0)两点,与y轴交于点C(3,0),作直线AC,点P是线段AB上不与点A、B重合的一个动点,过点P作y轴的平行线,交直线AC于点D,交抛物线于点E,连结CE、OD.(1)求抛物线的函数表达式;
(2)当P在A、O之间时,求线段DE长度s的最大值;
(3)连接AE、BC,作BC的垂直平分线MN分别交抛物线的对称轴x轴于F、N,连接BF、OF,若∠EAC=∠OFB,求点P的坐标.
▼优质解答
答案和解析
(1)由A、B(1,0)两点关于x=-1对称,得A(-3,0),
设抛物线为y=a(x-1)(x+3),
将点C(0,3)代入,解得a=-1,
∴抛物线的函数表达式y=-(x-1)(x+3)=-x2-2x+3;
(2)由B、C两点的坐标可求得直线BC的表达式:y=x+3,
设P(m,0),则D(m,m+3),E(m,-m2-2m+3),
s=yE-yD=-m2-2m+3-(m+3)
=-m2-3m
=-(m+
)2+
∵-1<0,
∴s有最大值
;
(3)∵OA=OC=3,OB=1,
∴∠OAC=∠OCA=45°,BC=
,BM=
,
∴∠ADP=∠ACO=45°,
∵cos∠ABC=
=
,即
=
,
∴BN=5,CN=5-2=3=OC(G为对称轴与x轴的交点),
可得△FNG≌△BCO,GF=OB=1=OG,
∴∠FOG=45°,
∴∠OFB=45°-∠FBG,
∵∠EAC=∠OFB,
∴∠EAC=45°-∠FBG
当点P在A、O之间时,如图(1),
∵∠AEP=∠ADP-∠EAC=45°-∠EAC=∠FBG,
∴tan∠AEP=tan∠FBG,
∴
=
=
,
∴
=
,
解得m=-1或-3(舍去),
∴P(-1,0)
当点P在O、B之间时,如图(2),
∵∠EAP=∠DAP-∠EAC
(1)由A、B(1,0)两点关于x=-1对称,得A(-3,0),设抛物线为y=a(x-1)(x+3),
将点C(0,3)代入,解得a=-1,
∴抛物线的函数表达式y=-(x-1)(x+3)=-x2-2x+3;
(2)由B、C两点的坐标可求得直线BC的表达式:y=x+3,
设P(m,0),则D(m,m+3),E(m,-m2-2m+3),
s=yE-yD=-m2-2m+3-(m+3)
=-m2-3m
=-(m+
| 3 |
| 2 |
| 9 |
| 4 |
∵-1<0,
∴s有最大值
| 9 |
| 4 |
(3)∵OA=OC=3,OB=1,
∴∠OAC=∠OCA=45°,BC=
| 10 |
| ||
| 2 |
∴∠ADP=∠ACO=45°,
∵cos∠ABC=
| BM |
| BN |
| OB |
| BC |
| ||||
| BN |
| 1 | ||
|
∴BN=5,CN=5-2=3=OC(G为对称轴与x轴的交点),
可得△FNG≌△BCO,GF=OB=1=OG,
∴∠FOG=45°,
∴∠OFB=45°-∠FBG,
∵∠EAC=∠OFB,
∴∠EAC=45°-∠FBG
当点P在A、O之间时,如图(1),
∵∠AEP=∠ADP-∠EAC=45°-∠EAC=∠FBG,
∴tan∠AEP=tan∠FBG,
∴
| AP |
| EP |
| FG |
| BG |
| 1 |
| 2 |
∴
| m+3 |
| −m2−2m+3 |
| 1 |
| 2 |
解得m=-1或-3(舍去),
∴P(-1,0)
当点P在O、B之间时,如图(2),
∵∠EAP=∠DAP-∠EAC
看了(2014•福田区模拟)如图所...的网友还看了以下:
高数中关于曲线积分的问题计算曲线积分∫xdx+(y-1)dy,其中平面曲线c是从点(-1,0)到点 2020-05-15 …
一道数学难题,求详解李老师从油条的制作受到启发,设计了一个数学题,在数轴上截取从原点到1的对应点的 2020-05-15 …
2009绍兴数学中考16题李老师从油条的制作受到启发,设计了一个数学问题:如图,在数轴上截取从原点 2020-05-15 …
已知|x-1|=4 如果x-1的绝对值等于4,求X并观察数轴上表示数X的点与1的点的距离 在1的启 2020-05-16 …
1.用代数方法解出下列两个圆锥曲线(a,b)的交点a.长轴顶点为(-3,11)和(-3,-9),离 2020-06-07 …
设同在一个平面内的动点P,Q坐标分别是(x,y),(X,Y),并且坐标间存在关系X=3x+2y-1 2020-06-14 …
解方程.|x-1|+|x+2|=5由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为 2020-06-29 …
李老师从拉面的制作过程受到启发,数轴上截取从原点到1的对应点的线段AB,对折后(点A与点B重合)再 2020-07-13 …
过点(3.-1)的入射光线平行于抛物线y^2=2px(p>0)的对称轴,照射到抛物线上,反射光线经 2020-07-15 …
已知斜率为-1且过点(2,1)的直线l与圆C:(x-1)²+y²=4相交于A,B两点(1)求直线l 2020-07-15 …