早教吧作业答案频道 -->数学-->
抛物线y=-x^2-2kx+3k^2(k>0)交x轴于A,B两点,交y轴于点C,以AB为直径的圆E交y轴于点D,F,抛物线y=-x^2-2kx+3k^2(k>0)交x轴于A,B两点,交y轴于点C,以AB为直径的圆E交y轴于点D,F,且DF=4,G是劣弧AD上的动点(不
题目详情
抛物线y=-x^2-2kx+3k^2(k>0)交x轴于A,B两点,交y轴于点C,以AB为直径的圆E交y轴于点D,F,
抛物线y=-x^2-2kx+3k^2(k>0)交x轴于A,B两点,交y轴于点C,以AB为直径的圆E交y轴于点D,F,且DF=4,G是劣弧AD上的动点(不与点A,D重合),直线CG交x轴于点P,求1:当直线CG是圆E的切线时,tan∠PCO的值,2:当直线CG是圆E的割线时,作GM⊥AB,垂足为H,交PF于点M,交圆E于另一点N,设MN=t,GM=u,求u关于t的函数关系式
抛物线y=-x^2-2kx+3k^2(k>0)交x轴于A,B两点,交y轴于点C,以AB为直径的圆E交y轴于点D,F,且DF=4,G是劣弧AD上的动点(不与点A,D重合),直线CG交x轴于点P,求1:当直线CG是圆E的切线时,tan∠PCO的值,2:当直线CG是圆E的割线时,作GM⊥AB,垂足为H,交PF于点M,交圆E于另一点N,设MN=t,GM=u,求u关于t的函数关系式
▼优质解答
答案和解析
1:当直线CG是圆E的切线时,tan∠PCO的值
E为AB中点 E=(-k,0)
tan∠PCO=tan∠CEO=CO/EO=3k^2/(-k)=-3k
2:当直线CG是圆E的割线时,作GM⊥AB,垂足为H,交PF于点M,交圆E于另一点N,设MN=t,GM=u,求u关于t的函数关系式
C=(0,3k^2)
G∈DP
∴XG/Xp+YG/3k^2=1
M∈FP
∴XG/Xp+YM/(-√3k)=1
∴YG=(-√3k)YM
∴u=绝对值(√3k+1)/(√3k-1)*t
注:XG,YG表示G的横纵坐标,等等
感觉方法是对的,算错了我也没办法.
E为AB中点 E=(-k,0)
tan∠PCO=tan∠CEO=CO/EO=3k^2/(-k)=-3k
2:当直线CG是圆E的割线时,作GM⊥AB,垂足为H,交PF于点M,交圆E于另一点N,设MN=t,GM=u,求u关于t的函数关系式
C=(0,3k^2)
G∈DP
∴XG/Xp+YG/3k^2=1
M∈FP
∴XG/Xp+YM/(-√3k)=1
∴YG=(-√3k)YM
∴u=绝对值(√3k+1)/(√3k-1)*t
注:XG,YG表示G的横纵坐标,等等
感觉方法是对的,算错了我也没办法.
看了 抛物线y=-x^2-2kx+...的网友还看了以下:
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左 2020-05-13 …
二次函数E(3,0)为圆心以5为半径的园E与X轴交于C点,抛物线Y=aX²+bX+c经过A,B,C 2020-05-13 …
抛物线y=-x2+2x+3与x轴相交于a,b两点,点a在b的左边,与y轴相交于点c,抛物线顶点为d 2020-05-16 …
(2009•大连)如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线F与y轴交于点A,与直线O 2020-07-14 …
(2003•盐城)如图,已知抛物线y=ax2+bx+c(a<0)与x轴交于A、B两点(点A在点B的 2020-07-22 …
如图,抛物线F:y=ax^2+bx+c的顶点为P,抛物线与y轴交于点A,与直线OP交于点B,过点P 2020-07-29 …
如图1,抛物线y=-23x2+bx+c与x轴相交于点A,C,与y轴相交于点B,连接AB,BC,点A的 2020-11-01 …
如图,抛物线y=-14x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,52),直线y=kx 2020-11-01 …
如图,在平面直角坐标系中,以点A(3,0)为圆心,以5为半径的圆与x轴相交于B、C,与y轴相交于点D 2020-11-28 …
如图,直线y=-x+6与x轴交于点A,与y轴交于点B,以线段AB为直径作⊙C,抛物线y=ax2+bx 2021-01-11 …