早教吧作业答案频道 -->数学-->
证明多元函数X^4*Y^2+Y^4*X^2+Z^4*X^2-3*X^2*Y^2*Z^2对所有XYZ非负
题目详情
证明多元函数X^4*Y^2+Y^4*X^2+Z^4*X^2-3*X^2*Y^2*Z^2对所有XYZ非负
▼优质解答
答案和解析
x^2>=0,y^2>=0,z^2>=0
用均值不等式 (a+b+c)/3>=3次根号abc
x^4y^2+y4^x^2+z^4x^2>=3 (x^4y^2*y4^x^2*z^4x^2)^(1/3)=3x^2y^2z^2
所以有 x^4y^2+y4^x^2+z^4x^2-3x^2y^2z^2>=0
即x^4y^2+y4^x^2+z^4x^2-3x^2y^2z^2用所有xyz非负
用均值不等式 (a+b+c)/3>=3次根号abc
x^4y^2+y4^x^2+z^4x^2>=3 (x^4y^2*y4^x^2*z^4x^2)^(1/3)=3x^2y^2z^2
所以有 x^4y^2+y4^x^2+z^4x^2-3x^2y^2z^2>=0
即x^4y^2+y4^x^2+z^4x^2-3x^2y^2z^2用所有xyz非负
看了证明多元函数X^4*Y^2+Y...的网友还看了以下:
x^2/(x^2+y^2+xy)+y^2/(y^2+z^2+yz)+z^2/(z^2+x^2+xz 2020-05-14 …
已知关于X的一元二次方程x^2+2(k-1)x+k^2-1=0有两个不相等的实数根已知关于x的一元 2020-05-16 …
∫∫∫z^2dxdydz,其中Ω是两个球:x^2+y^2+z^2≤R^2和x^2+y^2+z^2≤ 2020-06-14 …
设f(x)为连续函数,f(0)=a,F(t)=∫∫∫Ω{z-f(x^2+y^2+z^2)]dv,其 2020-06-15 …
几个初2的整式①有理数x,y,z满足(x^2-xy+y^2)^2+(z+3)^3=0,那么x^3+ 2020-07-30 …
已知复数z满足|z|=2,z2的虚部为2.(1)求复数z;(2)设z,(.z)2,z-z2在复平面 2020-07-30 …
下列语句:①2+2是有理数;②求方程x2+2x-3=0的解;③2100是个大数;④肺炎是怎样传播的 2020-08-02 …
已知复数ω满足ω-4=(3-2ω)i(i为虚数单位),z=5/ω+|z-2|,若z的平方根为a=b 2020-08-02 …
关于z的方程z^2+(x+yi)z+1=0(x,y∈R)在z∈[1/2,2]内有解.求x+y的范围 2020-08-02 …
(x-2)^2=9(x+3)(步骤)用十字相乘法:x^2-5倍的根号2*x+83x^2-2x-1= 2020-08-03 …